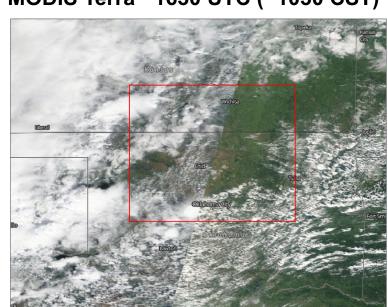
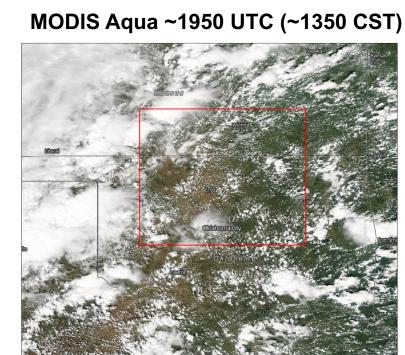
Exploring the Mechanisms of Land-Atmosphere Interactions during HI-SCALE

Jingyi Chen⁽¹⁾, Samson Hagos⁽¹⁾, Heng Xiao⁽¹⁾, Robert Houze^(1, 2), Jerome Fast⁽¹⁾, Zhe Feng⁽¹⁾

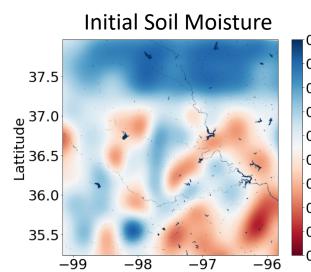
(1) Pacific Northwest National Laboratory, Richland, WA, USA (2) Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA

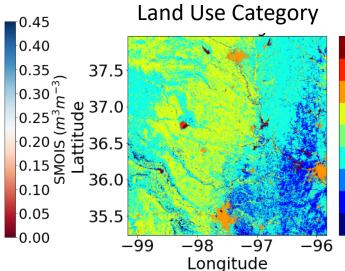

Introduction


Land-atmosphere interactions play important roles in the initiation of shallow convection and the subsequent potential transitions to deep convection. This study explores how the land properties are related to the convection and cloud populations during daytime over Southern Great Plain (SGP) based on an LES-version of WRF Simulations. Isentropic and cluster analysis of **Equivalent** potential temperature (θ_e) are used to assess how land surface conditions lead to the simulated cloud populations.

Case Overview

- **Time and Location:** August 30th, 2016, Southern Great Plain
- A "Golden Day" with transitions from shallow to deep convection


MODIS Terra ~1630 UTC (~1030 CST)



WRF-LES Simulations

- From 08/30 12:00 UTC to 08/31 00:00 UTC
- Spatial Resolution: 300m
- Output time step: 15 min
- More details are in Jerome Fast's talk (A41D03) on Thursday.

Longitude

Barren and Sparsely Vegetated Urban and Built-Up Croplands Permanent Wetlands Open Shrublands Deciduous Broadleaf Forest

Isentropic analysis helps to

- reduce the 4D dataset into 3D (horizontal 2D -> θ_e),
- separate the air between the ascent, warm, moist air and subsiding, cold, dry air, and
- isolate the irreversible convection overturning by filtering out reversible motions.

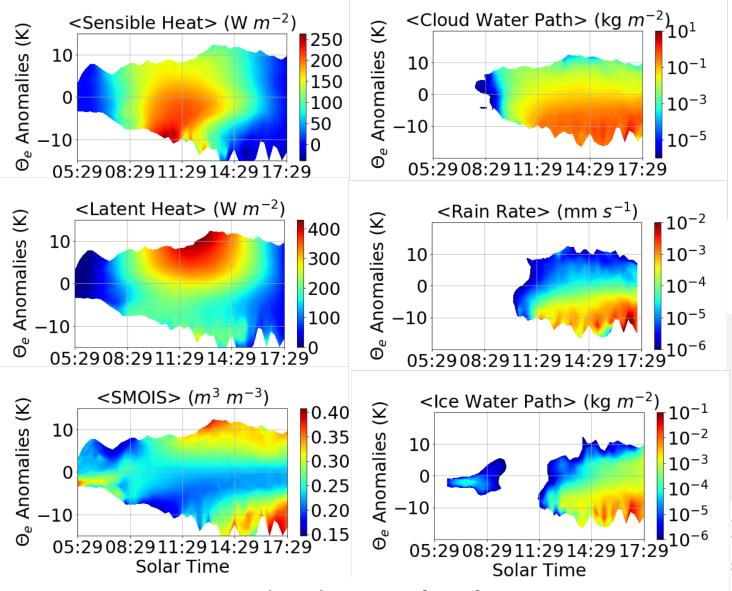


Figure 2. Isentropic distribution of surface properties.

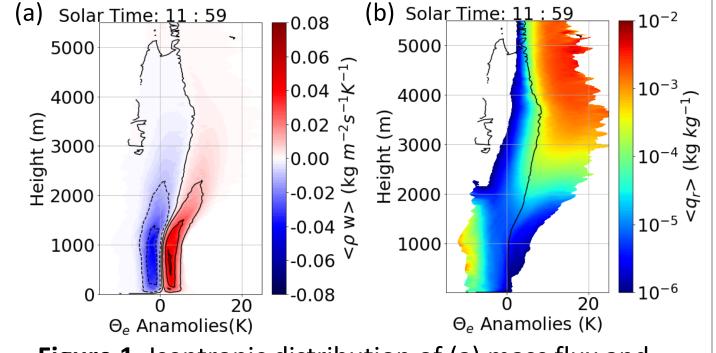
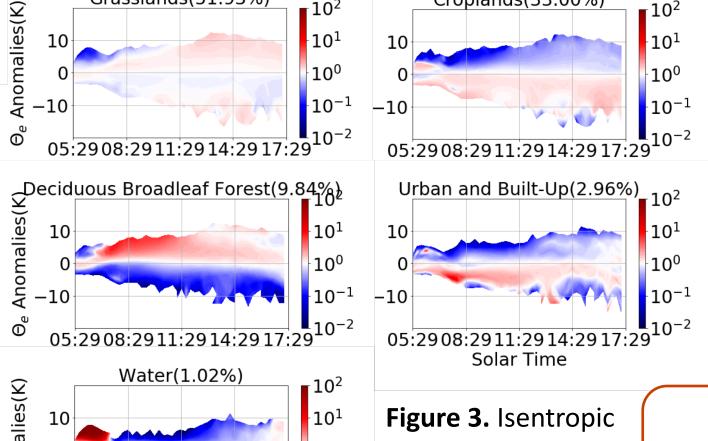
Over surface (Figure 2): lowest level θ_e' (θ_{es}')

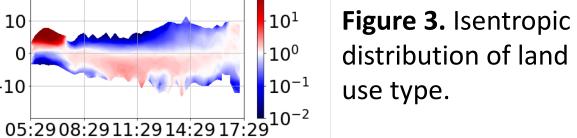
- High θ_{es} ' are associated with high latent heat (LH) and low sensible heat (HFX).
- Soil moisture (SMOIS):
 - a. High initial SMOIS causes high LH, so the θ_{es} of those region increase.
 - b. Raining events cause another high SMOIS region with low θ_{es}' .
- Regions with large cloud water path are over low θ_{es} .

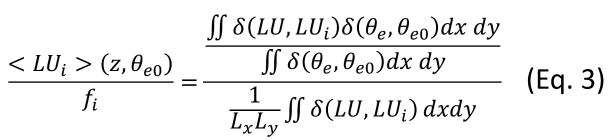
Land use type (Figure 3):

Grassland and broadleaf forest are associated with high values of θ_{es} , while cropland, urban and water are associated with low values of θ_{es}' .

Isentropic Analysis


Figure 1. Isentropic distribution of (a) mass flux and (b) rain water mixing ratio.


$$< \rho x > (z, \theta_{e_0}) = \frac{1}{L_x L_y} \iint_{0}^{L_x L_y} [\rho x \, \delta(\theta_e - \theta_{e_0})] \, dx \, dy$$
 (Eq.1)
 $< x > = < \rho x > / < \rho >$ (Eq.2)

In lower troposphere (Figure 1):

- Upward mass flux is associated with positive θ_e anomalies (θ_e') , and vice versa.
- Rainwater starts to appear over the region with positive ${\theta_e}'$, and falls on the region with negative ${\theta_e}'$

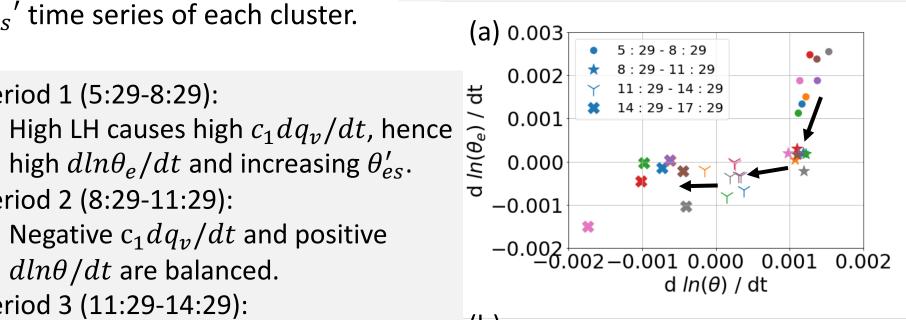
LU: index of the land use type (in Eq.3) θ_{e0} : the θ_{e} of each isentropic contour (In Eq. 1 and Eq.3)

Cluster Analysis

"K-means" unsupervised learning (Figure 4)

- Samples: θ_{es} over all the grids (990×990)
- Features: 49 time steps
- Eight clusters

-0.50 දි


-1.00 á

(Figure 4b) The trends of θ_{es} time series among clusters are dramatically different.

Budgets of θ_e (Figure 5):

 $ln\theta_e = ln(\theta) + c_1 q_v$ (c_1 is constant) $-> d \ln \theta_e / dt = d \ln \theta / dt + c_1 dq_v / dt$

- Contributions from $dln\theta/dt$ to $d \ln \theta_e / dt$ are more than those from $c_1 dq_v/dt$.
- Most of the variations among clusters are explained by $c_1 dq_v/dt$.

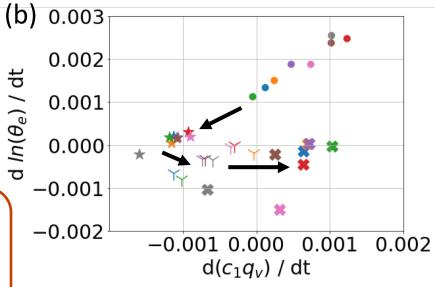


Figure 5. Contributions from (a) $dln\theta/dt$ and (b) c_1dq_v/dt to $dln\theta_e/dt$ for the 8 clusters from Figure 4.

Summary

Figure 4. (a) Cluster analysis of θ_{es} .

(b) θ_{es} time series of each cluster.

 $dln\theta/dt$ are balanced.

water vapor depletion.

high $dln\theta_e/dt$ and increasing θ_{es}' .

Negative $c_1 dq_v/dt$ and positive

Rain processes compensate the

Similar with P3 except for more rain.

Period 1 (5:29-8:29):

Period 2 (8:29-11:29):


Period 3 (11:29-14:29):

Period 4 (14:29-17:29):

- Convection points start with high θ_e , which is transported upward. As rain is formed, rain falls over the low θ_{ρ} environment.
- Convection prefers to occur over grassland and forest, rather cropland, urban and water.
- The spatial variations of q_v tendency are larger than those of θ tendency, and hence contribute more to the different trends of θ_e time series.

For more information, contact jingyi.chen@pnnl.gov

Notations:

- θ_e : equivalent potential temperature θ_e' : θ_e spatial anomalies
- θ_{es} ': lowest level θ_{e} ' (about 10m)
- θ : potential temperature q_{ν} : water vapor mixing ratio ρ : air density (in Eq.1) L_x or L_v : domain size (in Eq.1 and Eq.3)
- z: the height above the ground (in Eq.3) δ (): Dirac's delta function (in Eq.1 and Eq.3)
- ; : fraction of the ith land use type over domain (in Eq.3)