The Olympic Mountains Experiment (OLYMPEX)

An Opportunity to Explore Terrain-Influenced Precipitation Processes in Mid-Latitude Cyclones

Angela Rowe

Megan Chaplin, Thomas Schuldt, Joe Zagrodnik, Robert A. Houze, Jr., Lynn McMurdie University of Washington, Seattle, WA

AMS 38th Conference on Radar Meteorology Chicago, IL 31 August 2017

OLYMPEX

October 2015 – April 2016

- Ground sites (snow, rain)
- Soundings
- Aircraft
- Ground-based radars (NPOL, DOW6, EC)

Windward, high terrain, leeside

Doppler on Wels Water

OLYMPEX Precipitation

~65 frontal systems (warm/cold, sectors, degrees of enhancement)

What can radar tell us about precipitation processes leading to enhancement?

Houze et al. (2017), in press

NPOL - Ocean vs. Land

12 Nov – 18 Dec, 3-15 Jan

Contoured Frequency by Altitude Diagrams

Frequencies normalized by level for all NPOL RHI data over ocean and land above 2 km height

Orographic enhancement

- Dominated by certain events? Dependence on environmental conditions?
- Partition NPOL data by environmental parameters from NARR at NPOL site
 - Melting level height
 - Moist static stability
 - Integrated vapor transport
 - Wind direction

- Upper-level enhancement in reflectivity in almost all scenarios, with greatest enhancement associated with:
 - **✓ Large IVT**
 - √ High melting level
 - ✓ Neutral moist stability
 - ✓ Strong low-level southwesterly winds
- Warm sector (Atmospheric River)
 - Also highest rain rates (Zagrodnik et al. 2017)

12-13 November 2015

1948 UTC 12 Nov 2015 - DOW

12 Nov 2015 Citation

-9°C (4 km)

-17°C (5 km)

-26°C (6 km)

2DSV: 10-1280 μm

12 Nov 2015 Citation

- Greater reflectivity
- Larger particles
- Many bullet rosettes
- Some aggregating

12-13 November 2015 – 540 m

12 Nov 2015 2210 UTC (prefrontal)

13 Nov 2015 0110 UTC (prefrontal)

13 Nov 2015 0350 UTC (warm sector)

13 Nov 2015 1536 UTC (warm sector)

13 Nov 2015 Citation

CPI: 15-2500 μm

Conclusions

- Upper-level enhancement in reflectivity over windward slopes
 - Strongest in warm sector/atmospheric river scenarios, but a persistent feature
 - Case of larger (some aggregated) bullet rosettes in reflectivity max aloft
- DSD variability within storm sector, location
 - Varying relative roles of warm-rain and ice-based processes
 - Transient upper-level Z and ZDR maxima
- Generating cells producing high liquid water content aloft
 - Presence of rimed plates below peak in LWC

Looking forward

- Additional cases with coincident in situ data
 - Upper-level Z and ZDR maxima
- Extending to high terrain/leeside
 - APR3 (DC8)
 - EC X-band

- Influence of K-H waves
 - Barnes et al., in prep
 - Above, within, and below ML

This work is supported by NASA Grants #NNX13AG71G, #NNX15AL38G, #NNX16AD75G, and NSF Grant #AGS-1503155

