The Olympic Mountains Experiment (OLYMPEX) An Opportunity to Explore Terrain-Influenced Precipitation Processes in Mid-Latitude Cyclones Angela Rowe Megan Chaplin, Thomas Schuldt, Joe Zagrodnik, Robert A. Houze, Jr., Lynn McMurdie University of Washington, Seattle, WA AMS 38th Conference on Radar Meteorology Chicago, IL 31 August 2017 #### **OLYMPEX** #### **October 2015 – April 2016** - Ground sites (snow, rain) - Soundings - Aircraft - Ground-based radars (NPOL, DOW6, EC) Windward, high terrain, leeside # Doppler on Wels Water ### **OLYMPEX Precipitation** ~65 frontal systems (warm/cold, sectors, degrees of enhancement) What can radar tell us about precipitation processes leading to enhancement? Houze et al. (2017), in press ### NPOL - Ocean vs. Land 12 Nov – 18 Dec, 3-15 Jan #### **Contoured Frequency by Altitude Diagrams** Frequencies normalized by level for all NPOL RHI data over ocean and land above 2 km height # Orographic enhancement - Dominated by certain events? Dependence on environmental conditions? - Partition NPOL data by environmental parameters from NARR at NPOL site - Melting level height - Moist static stability - Integrated vapor transport - Wind direction - Upper-level enhancement in reflectivity in almost all scenarios, with greatest enhancement associated with: - **✓ Large IVT** - √ High melting level - ✓ Neutral moist stability - ✓ Strong low-level southwesterly winds - Warm sector (Atmospheric River) - Also highest rain rates (Zagrodnik et al. 2017) ## 12-13 November 2015 ### 1948 UTC 12 Nov 2015 - DOW 12 Nov 2015 Citation -9°C (4 km) -17°C (5 km) -26°C (6 km) 2DSV: 10-1280 μm #### 12 Nov 2015 Citation - Greater reflectivity - Larger particles - Many bullet rosettes - Some aggregating ### 12-13 November 2015 – 540 m 12 Nov 2015 2210 UTC (prefrontal) 13 Nov 2015 0110 UTC (prefrontal) 13 Nov 2015 0350 UTC (warm sector) 13 Nov 2015 1536 UTC (warm sector) #### 13 Nov 2015 Citation CPI: 15-2500 μm ### **Conclusions** - Upper-level enhancement in reflectivity over windward slopes - Strongest in warm sector/atmospheric river scenarios, but a persistent feature - Case of larger (some aggregated) bullet rosettes in reflectivity max aloft - DSD variability within storm sector, location - Varying relative roles of warm-rain and ice-based processes - Transient upper-level Z and ZDR maxima - Generating cells producing high liquid water content aloft - Presence of rimed plates below peak in LWC # **Looking forward** - Additional cases with coincident in situ data - Upper-level Z and ZDR maxima - Extending to high terrain/leeside - APR3 (DC8) - EC X-band - Influence of K-H waves - Barnes et al., in prep - Above, within, and below ML This work is supported by NASA Grants #NNX13AG71G, #NNX15AL38G, #NNX16AD75G, and NSF Grant #AGS-1503155