

Jennifer C. DeHart

PhD Defense 9 August 2017 University of Washington, Seattle, WA

NASA MODIS

## Tropical cyclone (TC) impacts



#### Rainfall intensified near terrain

#### Rainfall records

12-h: 1,144 mm – TC Denise (1996)

24-h: 1,825 mm – TC Denise (1996)

72-h: 3,929 mm – TC Gamede (2007)

96-h: 4,869 mm – TC Gamede (2007)





# How do clouds change as they move over terrain?

- Orographic modification
- Numerous possibilities!
- Specific process determined by the kinematic / thermodynamic environment



# How do clouds change as they move over terrain?

- Orographic modification
- Numerous possibilities!
- Specific process determined by the kinematic / thermodynamic environment
- Example processes:
  - Larger falling raindrops collect cloud water / tiny raindrops generated by orographic ascent
  - Convection



## TCs: strong radial variations



Houze 2010 Wallace and Hobbs

#### **Cloud water**

- Warm rain processes prevalent in the literature
  - Larger raindrops collecting orographically-generated cloud water / tiny raindrops

- Primarily horizontal maps of reflectivity, precipitation
- When available, vertical resolution usually insufficient



#### Convection

- Other processes can occur under proper circumstances
  - Deep convection observed in the eye of Hurricane Georges (1998) as it passed over Hispaniola
  - Potential instability in the eye



### Lack of complete landfall



MORAKOT(2009) KALMAEGI(2008) JANGMI(2008) FUNGWONG(2008) MINDULLE(2004) TALIM(2005) 30° N-30 Sep 00 UTC 25° N-20° N-115° E 125° E 120° E



Smith et al. 2009

Yu and Cheng 2014

Liu and Smith 2014

## Hurricane Karl (2010)

- NASA Genesis and Rapid Intensification Processes (GRIP) campaign
  - Airborne radar with high vertical resolution
- Landfall with no chance for regeneration
  - Karl decayed completely



#### Questions

- Does the orographic modification of precipitation in Hurricane Karl occur through warm rain processes?
- Do the modification processes change during landfall as Karl weakens?

#### **Hurricane Karl**

- Category 3 hurricane before landfall
- Flooding and landslides responsible for large fraction of the damage (Stewart 2011)
- Rapid decay







#### 24-h rainfall

- 13 UTC 9/17 13 UTC 9/18
- Peaks along the sloping terrain and near the inner core
- Only have time series at 3 locations



## 3-h precipitation



#### **NASA GRIP**

- DC-8 aircraft
  - 12 km flight altitude
  - Dropsondes
  - Airborne Second Generation Precipitation Radar (APR-2)
    - Ku- / Ka-band (13.4 / 35.6 GHz)
    - Observes hydrometeor characteristics (size, amount)
    - High vertical resolution (37 m)
    - Ku-band beam closest to vertical







Rich in moisture

Slight low-level instability

## Flight leg #1





## Flight leg #2





## Flight leg #3





#### **Remnant Convection**









## **Summary of Radar Analysis**

#### Processes

- Different vertical precipitation structures exist in regions of upslope and downslope / flat flow
- Enhancement occurs at low levels
  - Not uniform, nearby thermodynamic environment supports shallow convection

#### Impact of landfall

- Strong changes to the overall storm structure
- Deep convection developed after Karl dissipated
  - Modification processes are not static during landfall
- Precipitation modest compared to other TCs

### What about the terrain height?

- Prior studies show that terrain height affects the rate of storm weakening
- Assumption that precipitation increases with terrain height

 How do precipitation processes in a landfalling TC respond to the height of a topographic barrier?

# Continental Barrier

- Larry (2006) made landfall over Australia
  - Rain initially larger when terrain present, but Larry weakens quickly
  - Inland precipitation reduced

- Terrain height ~800 m
- Three-dimensional processes unexamined



#### 3-D Structure

- Nari (2001) made landfall over Taiwan
  - Precipitation generally scaled with terrain height
  - More dominant cold rain processes
  - (Yang et al. 2008; Yang, Braun, and Chen 2011; Yang, D. Zhang, Tang, and Y. Zhang 2011; Yang, Wang, Zhang, and Weng 2011)

- Don't fully consider precipitation type
- Outer regions neglected
- Evolution insufficiently examined



## **WRF Simulations**

| Version         | WRF-ARW 3.8.1                 |
|-----------------|-------------------------------|
| Start Time      | 0000 UTC 15 September         |
| Initialization  | ERA-Interim                   |
| Domains         | 54, 18, 6, 2 km               |
| Vertical Levels | 40                            |
| Microphysics    | Goddard                       |
| Boundary Layer  | Mellor-Yamada-Janjic<br>(MYJ) |



#### **Storm Tracks + Tall Plateau**



#### **Control Members**



#### **Control Members**



# Simulated Precipitation

"Midpoint"













### midpoint





# How do the simulated structure and microphysical variables evolve?

- Isolate 9-h period around midpoint
- Include only data along sloping terrain
- Separate data by 75-km radius
  - Outside: 0.5° S to 2.0° N
- Small ensemble (10 members)



#### **Storm Tracks**



#### **Storm Intensities**



Average



342

# Rain Frequency

0.5 – 2.0 km above each plateau



# Graupel Frequency

5.0 – 7.0 km above sea level



# Cloud water Frequency

0.5 – 2.0 km above each plateau



#### Conclusions

- Terrain height affects rate of decay
  - Storm structure
    - Warm core size, organization of precipitation features
  - Precipitation processes
    - Tall plateau: moist neutral processes disappear, mix of warm & cold microphysical processes near the center, widespread convection at larger radii
    - Short plateau: moist neutral processes retained, eyewall / rainband remain intact
- Microphysical issues
  - Graupel mixing ratios exceed observations
    - Problematic given the strong control on surface precipitation
  - Tall plateau precipitation pattern similar to observations, but likely obtained realistic result through unrealistic processes







#### Conclusions

- Terrain height affects rate of decay
  - Storm structure
    - Warm core size, organization of precipitation features
  - Precipitation types
    - Tall plateau: moist neutral processes disappear, mix of warm & cold microphysical processes near the center, widespread convection at larger radii
    - Short plateau: moist neutral processes retained, eyewall / rainband remain intact
- Microphysical issues
  - Graupel mixing ratios exceed observations
    - Problematic given the strong control on surface precipitation
  - Tall plateau precipitation pattern similar to observations, but likely obtained realistic result through unrealistic processes

# Extra slides

#### **Future work**

- Observations!
  - Microphysics, kinematics, and thermodynamics
  - Additional case studies and statistical analyses
  - Model / microphysical scheme validation
- Consider environmental / storm factors
  - Vertical wind shear, initial storm intensity, storm translation speed, etc

#### **Remnant Convection**



## **Reflectivity Slopes**



# Flight leg #3





## 2 h before midpoint



## 2 h before midpoint



# midpoint







# midpoint





# Vertical velocity

0.5 – 2.0 km above each plateau









