Ground-based measurements of precipitation during OLYMPEX

Angela Rowe

University of Washington, Seattle, WA

Short Course: "Validation of the Rain/Snow GPM Satellite Data in the Olympic Mountains: UW and NASA"

Western Snow Conference

Seattle, WA

18 April 2016

Ground-based Scanning Precipitation Radars - KLGX

- Full-volume scans every 5 minutes
- Good for precipitation estimates
- Not ideal for microphysical studies

Ground-based Scanning Precipitation Radars - NPOL

NPOL

Ground-based Scanning Precipitation Radars - DOW

Ground-based Scanning Precipitation Radars – EC

Ground-based Scanning Radars – D3R

Radar reflectivity

- Backscatter: Energy scattered back to receiver
 - P_t : $10^5 10^6$ W
 - $P_r: 10^{-13} 10^{-14} W$
- Depends on:
 - Size (wavelength)
 - Shape
 - State (Liquid/Ice)

$$Z = \sum_{i=1}^{n} D_i^6$$

$$P_r = \frac{P_t G^2 \lambda^2}{\left(4\pi\right)^3 R} \sigma$$

$$\sigma_i = \frac{\pi^5 |K|^2 D_i^6}{\lambda^4}$$

Radar wavelengths

Higher frequency, smaller antenna

Radar Band	Frequency (GHz)	Wavelength (cm)
Millimeter	40 to 100	0.75 to 0.30
Ka	26.5 to 40	1.1 to 0.75
K	18 to 26.5	1.7 to 1.1
Ku	12.5 to 18	2.4 to 1.7
X	8 to 12.5	3.75 to 2.4
С	4 to 8	7.5 to 3.75
S	2 to 4	15 to 7.5
L	1 to 2	30 to 15
UHF	0.3 to 1	100 to 30

- Rayleigh: Hydrometeors small compared to wavelength
- X, C, S, and L: precipitation
- K, mm: clouds

NPOL (S-band) - Valley

D3R (Ka-/Ku-band) - Valley

NPOL (S-band) - Valley

Dual-polarization

 Alternating or simultaneous transmission of both horizontally and vertically polarized waves

Differential Reflectivity

$$Z_{DR}$$
 = +2 to +4 dB (columns)
 Z_{DR} = +3 to +6 dB (dendrites / plates)
 Z_{DR} = 0 to +1 dB (aggregates)

$$Z_{\rm DR} = 10 \log_{10}(Z_{\rm HH}/Z_{\rm VV})$$

Correlation Coefficient

Measure of the similarity between horizontal and vertical returns from a pulse volume

Precipitation

Brightband

Role of terrain

Lifting air (upstream of mountains)

Precipitation enhancement

Dipping of brightband

- Latent cooling (melting)
- Melting distance
- Adiabatic cooling (forced ascent)
- Preexisting cold air

Valley flow

Turbulence

Kelvin-Helmholtz waves

17 Dec 2015

Kelvin-Helmholtz waves, observed for 5 hours (valley and ocean) by NPOL in stable layer with strong directional wind shear

Role in **enhanced microphysics**

Microphysical processes

18 Dec 2015

In-situ Aircraft Data

Microphysical processes

Citation: Flying at 14,000 FT (~ 4 km), noted *plates*, *capped* columns, and *plate* aggregates

→ Dendritic growth zone, aggregation

DOW radar data

Ground-based Vertically Pointing

EC radar looking toward Hurricane Ridge

Distance from radar ————

Pdf File: RHI_C.rhi
Clutter Filter: DFT 6
Time sampling:64

PRF: 1000 Hz Range: 100 km Height: 0.000 km to

10.000 km

Hor Res: 0.200 km/pixel Vert Res: 0.033 km/pixel

Elevation: 0.1 deg to 15.1 deg

Azimuth: 181.0 deg
Data: Radar Data
Rainbow® Selex ES GmbH

Micro Rain Radar (MRR)

Micro Rain Radar (MRR)

Particle Imaging

Particle Imaging Probe (PIP)

- Developed for aircraft (high winds)
- Particle Video Imaging: high frame-rate records of grey-scale images
- Particle size and fallspeed measurements (snow)

Transition from rain to snow

Parsivel (PARticle SIze and VELocity)

- Size and fall speed
- Measures reduction in the voltage and duration of signal loss

Ground instruments

Tipping (single and dual) bucket rain gauges

Ground Instrument Network

Ground instruments

Pluvio – Weighing rain gauge for rain/snow

Parsivel – measures rain/ snow characteristics

Powered by 8 batteries and solar panels

Placed instrumented trailer at high elevation location (>3000') through spring

OLYMPEX 24-hour Precip (mm) 04/17/16 00:00 - 23:59 UTC 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0 ♦0.0 0.0 0.0 0.0. **0.0** 0.0 13.0 0.0 0.0 0.0 OLYMPEX 0.0 NWS/ASOS RAWS/HADS 0.0 SNOTEL Other

Summary

- Multi-frequency, dual-polarization, Doppler radar
 - Windward, leeward
 - Microphysical processes (dynamical context)
 - Rainfall estimation
- Ground instrument network
 - Drop size distribution, rain rate
 - Snow particle size, fallspeed
 - Rain totals
- Snow measurements...

