TRMM precipitation analysis in extreme storms in South America: Underestimation of near-surface rain
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Introduction

* The Tropical Measuring Mission (TRMM) satellite has provided insight
into the distribution of precipitating storms in remote tropical and
subtropical region of the world

 The TRMM Precipitation Radar (PR) has demonstrated that subtropical
South America 1s home to some of the most intense deep convection in the
world (Zipser et al. 2006)
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Fig. 1 Locations of intense convective events using the color code matching their rarity, Zipser et al. (2006).

* In addition, South American mesoscale convective system (MCS) cloud
shields are 60% larger than those over the United States (Velasco and
Fritsch 1987) and they have larger precipitation areas than those over the
United States or Africa (Durkee et al. 2009)

*  Thus, 1t 1s important to understand the impact of precipitation in South
America and 1nvestigate potential biases 1n the precipitation distribution
associated with the TRMM Precipitation Radar rainfall algorithm

»> A systematic bias in the amount and intensity of
precipitation has the potential to lead to improper
precipitation analyses and biased hydrological impacts,
which would preclude accurate forecasting and proper
climate modeling in this region of the world
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“Broad stratiform region:

*  UW methodology to separate
TRMM Precipitation Radar
(PR) echoes into three storm
types (Houze et al. 2007): ‘
deep convective cores, wide
convective cores, and broad
Stratiform regions

Horizontal area = 1 000 km?2
“WWide convective core”

Top height = 10 km
“Deep. convective core’
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Storm evolution hypothesis presented in

Rasmussen and Houze (2011):

Mo (T «  Deep convective cores initiate along
sl (i Andes foothills
. Convection grows upscale, develops wide
| convective cores, and moves eastward
o o e Decaying convective elements move
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Figure 2. Locations of storm types in South America derived from
TRMM PR data. From Romatschke and Houze (2010)

stratiform regions

Extreme convection is often initiated when the South American
low-level jet (SALLJ) funnels warm and moist air southward
along the foothills of the Andes (Romatschke and Houze 2011 and

Rasmussen and Houze 2011)
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TRMM Precipitation Radar

(Alt.: 350 km)

TRMM S/C L' M

/ o *  First space rain radar (Kummerow et al.
= 1998)

*  Covers 37.5°N-S across all longitudes and
has approximately 16 orbits per day
Operates at 13.8 GHz

Minimum detectable reflectivity ~17 dBZ

Resolution: 0.05°x0.05°, 1.e. Skm x S5km
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Precipitation rates are determined by an

Fig. 3 PR observation concept,

TRMM V6 Manual.

Z-R Relation: Reflectivity to Rain Rate

TRMM rain profiling algorithm
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* Selection of default drop size model

*  Correction for non-uniform beam filling

effects (Iguchi et al. 2000)
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algorithm of 2A25, Iguchi et al. (2009).
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Drop size distribution (DSD) parameter, epsilon, 1s an adjustment factor
that corrects the measured reflectivity rate to derive the effective

(adjusted) reflectivity (Z) in R = aZP
Small epsilon implies a large a factor = smaller R and rain rate

Kozu et al. 2009 have further shown that epsilon 1s negatively correlated
with storm-top height and lightning flash rate

Algorithm underestimates precipitation in regions of intense deep
convection over land (Iguchi et al. 2009)!

Houze Group Algorithm

Rain rates derived from the fine grid (0.05° x 0.05° horizontal and 0.25km
vertical resolution), employing the relation: R = (Z/ a)'/b

Rain rates are set to 0 1f the lowest height of positive reflectivity value and
underlying surface are 2.5+ km apart, as 1t 1s unlikely precipitation from
these altitudes will reach the surface

Techniques similar to this are used for ground-based radar rain estimates

interpolated reflectivity for a grid point in a convective system

Rain rate

Constants adjusted according to rain type

algorithm that is described in detail below
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Rain estimation method comparison

Unaccounted Near Surface Rain Rate
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There 1s a positive relationship between rain rate underestimation and
convective intensity, independent of season

Up to 40% 1n volumetric rainfall rate 1s unaccounted for in deep
convective storms

Full storm: Volumetric rain rate (10° kg/s) Cores: Volumetric rain rate (10°.kg/s).
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Deep convective storms exhibit the
largest underestimation of surface ol
precipitation from the TRMM PR
algorithm (compared to the Houze
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Conclusions

Compared to a more traditional Z-R calculation of precipitation, the
TRMM PR near-surface rain product generally underestimates the
volumetric and 1instantaneous rain rates in all storm categories

The underestimation gets worse as the storms become deeper and more
intense, especially over land (increasing slope with convective intensity)

Rain rate estimation 1s highly sensitive to the attenuation correction, the
DSD, and microphysical parameters used in the TRMM algorithm

Systematic miscalculation of the precipitation rates over land can give
rise to large biases that are important to consider when using TRMM
precipitation products to validate weather and climate models,
investigate extreme precipitation events, global precipitation estimates,
hydrological impacts, and many other relevant applications
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