Introduction

* Observations from the Tropical Rainfall Measuring Mission (TRMM) satellite
have led to the realization that intense deep convective storms just east of the
Andes in subtropical South America are among the most intense anywhere in the

world (Zipser et al. 2006)
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Figure 1. Locations of intense convective events using the color code matching their rarity.
From Zipser et al. (2006).

* On average, South American MCC cloud shields are 60% larger than those over o

the United States (Velasco and Fritsch 1987), the convection is deeper (Zipser et

al. 2006), and they have larger precipitation areas than those over the United
States or Africa (Durkee et al. 2009)

* Despite the severity and intensity of the storms, relatively few studies have been
conducted on South American convection, especially in the lee of the Andes
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Storm evolution hypothesis presented in
Romatschke and Houze (2010) and Rasmussen

and Houze (2011):

* Deep convective cores initiate along Andes '.
foothills and secondary topo features =
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* Convection grows upscale, develops wide
convective cores, and moves eastward

* Decaying convective elements move
farther eastward and develop broad
stratiform regions

Figure 2. Locations of storm types in South America
derived from TRMM PR data. From Romatschke and
Houze (2010)

The Andes Mountains funnel warm and moist air
southward via the South American Low Level Jet

Analogous environmental setup for
deep convection observed near
other major mountain ranges
(Rocky Mountains and Himalayas)!

Figure 3. Seasonal progression of moisture (28 mm
precipitable water). From Rasmussen and Houze (2011)
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South American MCSs
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Figure 5. a) TRMM PR data with GOES-12
IR data (K) underneath at 1010 UTC on 27
December 2003. (b) Cross section of

TRMM PR data taken along the black line
in (a). From Rasmussen and Houze (2011).
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* Strong influence of the Andes foothills and the Sierras
de Cordoba Mountains in convective initiation and
maintenance of MCSs
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Storms with wide convective cores tend to be linearly
organized

Figure 4. Sequence of infrared satellite
images (K) showing storm initiation and
evolution for the 26-27 December 2003 °
wide convective core. From Rasmussen

and Houze (2011).

Pattern of leading convective line and trailing
stratiform precipitation in wide convective core storms

+— Composite maps for
days when TRMM
observed a wide
convective core show
mid-level subsidence
and low-level

convergence in the lee of
the Andes (Figure 6)

'Red = Rising motion
Blue = Sinking motion

Figure 6. Climatological composite maps for days on which the TRMM PR showed
storms containing wide convective cores over subtropical S. America. (a) Vertical
motion (omega) and (b) 1000 mb winds. From Rasmussen and Houze (2011).

Mesoscale Organization

e Storms with wide convective cores tend to be
linearly organized

Elongated
cells

* Similarity to leading-line/trailing-stratiform
archetype identified in the United States (Houze et
al. 1990; adapted for South America in Fig. 7)

Leading
convective
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% Storms with wide convective cores in subtropical
South America tend to be line-organized and are
similar in organization to squall lines in Oklahoma
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High-Resolution Modeling Study

| — WRF simulations
have produced an
excellent
representation of
the 27 December
2003 case study
from Rasmussen
and Houze (2011)

Hydrometeor mixing ratios

+ Microphysics
testing indicated
that the Thompson
scheme captures
leading-line/trailing
stratiform structure

— WRF simulation
confirms the lee
subsidence
hypothesis
presented in

Rasmussen and
Houze (2011)
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‘!: Figure 9. Vertical cross-sections from the WRF simulation at 30° S. Shading indicates
relative humidity, the dashed contours are equivalent potential temperature, and the
vectors are circulation winds in the plane.

Conclusions

* Deep convection initiates near the Sierras de Cordoba
Mountains and Andes foothills, grows upscale into eastward
propagating MCSs, and decays into stratiform regions

* Storms with wide convective cores in subtropical South
America tend to be line-organized and are similar in
organization to squall lines in Oklahoma

* Lee subsidence capping low-level moisture is observed in the
model results

* Choice of microphysics scheme can greatly impact the storm
structure and is important for deep convective simulations
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