
Received: 2 October 2020 Revised: 12 April 2021 Accepted: 14 April 2021 Published on: 18 May 2021

DOI: 10.1002/qj.4045

R E S E A R C H A R T I C L E

Are finite-amplitude effects important in non-breaking
mountain waves?

Johnathan J. Metz Dale R. Durran

Department of Atmospheric Sciences,
University of Washington, Seattle,
Washington

Correspondence
J. J. Metz, Department of Atmospheric
Sciences, University of Washington, 408
Atmospheric Sciences-Geophysics (ATG)
Building, Box 351640, Seattle, WA 98195,
USA
Email: jjmetz@uw.edu

Funding information
National Science Foundation,
Grant/Award Number: AGS-1929466

Abstract
Linear theory has long been used to study mountain waves and has been
successful in describing much of their behaviour. In the simplest theoretical
context, that of two-dimensional steady-state flow with constant Brunt–Väisälä
frequency (N) and horizontal wind speed (U), finite-amplitude effects are
relatively minor until wave breaking occurs. However, in more complex
environmental profiles, significant finite-amplitude effects occur below the
wave-breaking threshold. We constructed a linearized version of a fully nonlin-
ear time-dependent model, thereby facilitating direct comparisons between lin-
ear and finite-amplitude solutions in cases with upstream profiles representative
of typical real-world events. Beginning with the simplest profile that includes
a tropopause, namely an environment with constant upstream wind speed and
two layers of constant static stability, we progressively investigate more complex
profiles that include vertical wind shear typical of the midlatitude westerlies.
Our results demonstrate that, even without wave breaking, finite-amplitude
effects can play an important role in modulating the mountain-wave ampli-
tude and gravity-wave drag. The modulation is a function of the tropopause
height and is most pronounced when the cross-ridge flow increases strongly with
height.
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1 INTRODUCTION
AND BACKGROUND

Linear theory has been applied to the study of mountain
waves for decades, including some of the earliest works
on the subject (Queney, 1948; Scorer, 1949) and some of
the latest analysis of observational data (Smith and Kruse,
2017). The relationship derived by Eliassen and Palm
(1960) between vertical energy and momentum fluxes for
steady non-dissipating mountain waves has been verified
using observations from recent field campaigns (Smith

et al., 2008; 2016). Wentzel–Kramers–Brillouin (WKB)
ray-tracing has been successfully used to explain grav-
ity wave propagation into the middle atmosphere (Marks
and Eckermann, 1995; Guest et al., 2000). Therefore, there
is considerable evidence that linear theory provides a
reasonably good approximation to the dynamics govern-
ing gravity-wave propagation through much of the atmo-
sphere.

Partly for this reason, as well as for simplicity and to
minimize computational cost, linear theory is widely used
in the parametrization of orographic gravity wave drag
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(GWD) in both numerical weather prediction (NWP) and
general circulation models (GCMs). In particular, the esti-
mate of the low-level mountain-wave momentum flux typ-
ically uses the functional dependence on the near-surface
wind Us, static stability Ns, and the unblocked mountain
height hub given by linear theory: NsUsh2

ub. Farther aloft,
the changes in wave amplitude and the level of wave break-
ing are parametrized using the WKB assumption (e.g.,
Palmer et al., 1986; McFarlane, 1987; Kim and Arakawa,
1995; Kim et al., 2003; Kim and Doyle, 2005). While
improvements to orographic GWD parametrizations have
been made to include low-level flow blocking (e.g., Lott
and Miller, 1997; Kim and Doyle, 2005) and mountain
anisotropy (e.g., Scinocca and McFarlane, 2000; Kim and
Doyle, 2005; Choi and Hong, 2015), major global mod-
elling centres such as the U.S. National Centers for Envi-
ronmental Prediction (NCEP; Chen et al., 2019; Zhou et al.,
2019), the European Centre for Medium-Range Weather
Forecasts (ECMWF; Sandu et al., 2016; ECMWF, 2020),
and the UK Met Office (Walters et al., 2017) continue to
estimate the momentum flux in the waves launched by the
mountain as proportional to NsUsh2

ub.
Nevertheless, nonlinear processes can be important in

setting the amplitude at which mountain waves are gen-
erated, but the importance of nonlinearity in regulating
wave amplitude is poorly understood, perhaps because so
much theoretical attention as been devoted to the special
case in which the upstream environmental Brunt–Väisälä
frequency N(z) and the cross-mountain wind speed U(z)
are constant with height. When N and U are constant, the
streamline displacement 𝛿(x, z) in steady two-dimensional
Boussinesq flow over such a ridge is governed by Long’s
equation (Long, 1953),(

𝜕2

𝜕x2 + 𝜕2

𝜕z2

)
𝛿 + N2

U2 𝛿 = 0. (1)

Here x is the horizontal coordinate perpendicular to the
ridge-line; z is the vertical coordinate.

Although Long’s equation is a linear partial dif-
ferential equation, it may be derived from the fully
nonlinear equations without making any small-amplitude
assumptions. Nevertheless, if U is constant, Equation (1)
may also be derived by assuming the mountain is
infinitesimally high and linearizing the governing
equations in the usual manner. When N and U are
constant, the only difference between the small-
and finite-amplitude solutions arises from the lower
boundary condition. Letting h(x) be the height of the
topography, the lower boundary condition requires
𝛿
[
x, h(x)

]
= h(x) in the exact finite-amplitude case and

is approximated by 𝛿(x, 0) = h(x) in the small-amplitude
limit.

F I G U R E 1 Comparison of streamlines of the one-layer linear
(solid) and nonlinear (dashed) solutions for a Witch of Agnesi
mountain with a= 10 km and Nhm/U = 0.6. Airflow is left to right;
the mountain profile coincides with the lowest solid streamline

As one might guess from the similarities in the gov-
erning equations for linear and finite-amplitude perturba-
tions, when N and U are constant the influence of non-
linear dynamics on the wave structure is often small. In
fact, as shown by Smith (1977), steady mountain waves
in a constant-N-and-U environment do not produce any
net nonlinear advection of vorticity or perturbation den-
sity. As is evident in a comparison of the small- and
finite-amplitude solutions1 in Figure 1, which are for a
case with N = 0.01 s−1, U = 10 m ⋅ s−1 and Nhm/U = 0.6,
where hm is the mountain height, the finite-amplitude
lower boundary condition does steepen the streamlines
above the mountain around z= 4.5 km, which is 3/4 of a
hydrostatic vertical wavelength (2𝜋U∕N) above the topog-
raphy. Despite the modest differences in the shape of
the streamlines between the linear and finite-amplitude
waves, the magnitude of the streamline displacements are
similar in the two cases. Nonlinear processes do not have
a dramatic impact on the mountain-wave momentum flux
generated in constant-N-and-U flow over a ridge unless
the ridge is high enough to force wave overturning.

In contrast to the constant-N idealization, there is typ-
ically a factor of 2 change in static stability between the
troposphere and the lower stratosphere, and changes in

1There are two ways to display streamlines for a mountain-wave linear
solution; their differences and our approach are discussed in Appendix B.
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the height of a sharp tropopause can strongly modulate
the strength of momentum fluxes associated with verti-
cally propagating hydrostatic mountain waves. If there
is a factor of 2 difference in N across the tropopause and
U is the same constant value in both layers, the ratio
of the momentum fluxes in the optimally tuned case
to the maximally detuned case is a factor of 4 in linear
mountain waves (Blumen, 1965; Klemp and Lilly, 1975).
The wave reflections at the tropopause responsible for
this variation in momentum fluxes are not captured in
a WKB framework, as they are neglected by the funda-
mental WKB assumption of a slowly varying mean state.
Laprise (1993) examined the appropriateness of apply-
ing the WKB approximation to linear wave propagation.
He found that, while the WKB approximation often pro-
vided a good estimate of the onset of linear steady-state
wave breaking (i.e., where Nh/U = 1.0), it often under- or
over-estimated the drag significantly compared to a lin-
ear steady-state column model. Furthermore, as shown
in the semi-analytic analysis in Durran, (1992, his figure
7), even such linear calculations for complex atmospheric
profiles as in Laprise (1993)’s steady-state column model
may themselves dramatically over- or under-estimate
the momentum fluxes in finite-amplitude non-breaking
waves.

The results of Blumen (1965) and Klemp and Lilly
(1975) assume discontinuous jumps in static stability. As
noted by Blumen (1985) and others, the partial reflec-
tion of vertically propagating waves at the tropopause
decreases as the thickness of the tropopause transition
layer is increased. Teixeira and Argaín (2020) related the
decrease in reflection coefficient to the surface pressure
drag and, as might be expected, the variation in pressure
drag is smaller for larger tropopause thicknesses.

Nevertheless, evidence suggests a discontinuity may
often be the best approximation for the tropopause. Birner
(2006) constructed a climatology of the fine-scale structure
of the tropopause and found that the transition between
tropospheric and stratospheric values of static stability is
often quite sharp and essentially discontinuous. While a
simple discontinuity in static stability can therefore serve
as a prototypical model for the tropopause, it is still use-
ful to examine how a smoother tropopause impacts the
solution. Teixeira and Argaín (2020) did conduct a pre-
liminary analysis of nonlinear effects on their smooth
tropopause solutions, but many of their cases (when
dimensionalized with realistic values) result in quite broad
tropopause transition layers. In this paper we will extend
the investigation in Teixeira and Argaín (2020) to con-
sider thinner and more realistic tropopause transition
layers.

Significant vertical variations in U(z) are common dur-
ing most real-world mountain wave events. Defining the

square of the Scorer parameter as

l2 = N2

U2 − 1
U

d2U
dz2 , (2)

the linear, two-dimensional, steady-state Boussinesq wave
equation in the presence of vertical wind shear is(

𝜕2

𝜕x2 + 𝜕2

𝜕z2

)
w + l2w = 0, (3)

where w is the vertical velocity. In contrast to the case
with constant U and Equation (1), the nonlinear govern-
ing equations cannot be expressed in a form similar to
Equation (3), suggesting that nonlinear effects could be
more significant in the presence of shear. While nonlinear
effects in the presence of shear have been examined previ-
ously by Wells and Vosper (2010), we investigated stronger
finite-amplitude effects by simulating higher mountains
than the 10 m high ridges considered in their paper.

Since the numerical method used in Durran (1992)
was based on two-layer solutions of Long’s equation, it is
unable to incorporate smooth vertical variations of static
stability, which is needed to explore a smooth transition
region at the tropopause. It is also unable to incorporate
wind shear. To overcome these limitations, we employed
a different methodology by linearizing a time-dependent
numerical model and comparing its simulations with
those of its nonlinear counterpart. This approach allowed
us to investigate a much larger space of background pro-
files than was possible in previous studies.

The rest of the paper proceeds as follows. The lin-
earization of the model and its configuration are described
in Section 2. The environmental conditions for the vari-
ous numerical experiments are described in Section 3. We
analyse the results of our simulations in Section 4 and pro-
vide further perspective on the way that finite-amplitude
effects impact the flow in Section 5. Section 6 contains our
conclusions.

2 MODEL DESCRIPTION

Our nonlinear simulations are performed with the Uni-
versity of Washington meso12 model (Durran and Klemp,
1983) running in a Boussinesq configuration. By neglect-
ing the decrease in mean density with height, the Boussi-
nesq assumption reduces the chance of stratospheric
wave breaking in our simulations. This model also serves
as the basis for our linearized version. For simplicity
in implementing the linearization, we utilize leapfrog
time differencing with a Robert–Asselin time filter and
fourth-order advection in both the linear and nonlinear
models.
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2.1 Linearization

For the model to be fully linear, three components must
be linearized: the advection terms, the lateral boundary
conditions, and the lower boundary condition. The radia-
tion upper boundary condition is already linear (Durran,
2010) and requires no modification. For the basic state,
we specify vertically varying but horizontally homoge-
neous profiles of potential temperature 𝜃(z) and horizon-
tal wind speed ū(z). These profiles are taken to be the
upstream environmental values of those variables. The
basic-state vertical velocity w(z) is taken to be identically
zero.

In the linear configuration, the coordinate surfaces are
flat, and no terrain-following coordinate transformation
is required. Letting overbars denote the vertically varying
basic state and primes the perturbations, the advection
terms are simply linearized as

ui
𝜕sj

𝜕xi
= ūi

𝜕s′j
𝜕xi

+ u′
i
𝜕sj

𝜕xi
(4)

where (u1,u2) = (u,w), (x1, x2)= (x, z), and (s1, s2, s3) =
(u,w, 𝜃). The outflow boundary conditions are those of
Klemp and Wilhelmson (1978), but with a linearized
advection term. For example, at the left boundary, their
equation 2.27,

𝜕u
𝜕t

+ (u + c∗) 𝜕u
𝜕x

= 0, (5)

becomes
𝜕u′

𝜕t
+ (ū + c∗) 𝜕u′

𝜕x
= 0. (6)

Here c* is a prescribed outflow phase speed. Waves with
this phase speed approaching the boundary are perfectly
transmitted through the boundary, while all others are
imperfectly transmitted (Durran, 2010).

2.2 Model configuration

Our simulations are conducted in two dimensions (x, z) to
explore a larger parameter space and also to compare with
the two-dimensional two-layer semi-analytic solutions of
Durran (1992). However, in contrast to Durran (1992),
which used a Witch of Agnesi profile given by

h(x) = hma2

(x − x0)2 + a2
, (7)

where hm is the mountain crest height, a is the half-width,
and x0 is the centre of the mountain, the terrain profile in

F I G U R E 2 Comparison of a cos4 (solid) and a Witch of
Agnesi (dashed) profile with the same values of hm and a

our simulations is a cos4 mountain given by

h(x) =
⎧⎪⎨⎪⎩

hm
16

[
1 + cos

(
𝜋(x−x0)

4a

)]4
,

|||| (x−x0)
4a

|||| < 1,

0,
|||| (x−x0)

4a

|||| ≥ 1.
(8)

A comparison between the cos4 mountain and the Witch
of Agnesi mountain with the same crest height and
half-width is shown in Figure 2. The cos4 mountain has
the advantage that the mountain height drops to zero
at a finite distance from the crest. Because of this, all
contributions to the surface pressure drag are confined
to a small neighbourhood in the centre of the domain.
In a constant N and U environment, the linear pres-
sure drag across the cos4 mountain exceeds that across
a Witch of Agnesi with same values of hm and a by a
factor of 1.3. This factor was evaluated numerically from
the linear analytic solution using Fourier transforms and
confirmed with the time-dependent linearized meso12
model.

For our simulations, the model was run with a hori-
zontal resolution ofΔx = 500 m and a vertical resolution of
Δz = 50 m. The domain was Lx = 600 km wide and 30 km
tall; the large time step, which is used to integrate all terms
not involved in the generation of acoustic modes, was 2 s,
and the small time step, used for acoustic modes, was
2/3 s. The Robert–Asselin filter coefficient was set to 0.1.
The terrain height was varied between simulations, but
the terrain width was specified using a constant a= 20 km.
The mountain was placed in the centre of the domain at
x0 = 300 km in all simulations. The outflow phase speed at
the lateral boundaries was specified as c* = 35 m⋅s−1 at the
upstream boundary and c* = 15 m⋅s−1 at the downstream
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boundary. These values were chosen to ensure that modes
are directed out of the computational domain with appro-
priate Doppler-shifted phase speeds at both lateral bound-
aries. The upper boundary used the radiation condition
specified in Durran, (2010, p. 484), with perfect upward
transmission specified for horizontal wavelengths of 18,
72, and 144 km. Although the model is inviscid, it incorpo-
rates scale-selective fourth-derivative dissipation as well as
a subgrid-scale mixing parametrization. This parametriza-
tion was active for the nonlinear simulations but inactive
for the linear simulations. The background wind field was
ramped up from zero to its full value over a period of
4000 s. The model was run to a non-dimensional time
U0t/a= 43.6, where U0 is the surface wind speed, which
was long enough for all non-breaking cases to achieve an
approximate steady state.

3 UPSTREAM ENVIRONMENTS

Four families of numerical experiments with differing
upstream soundings were conducted in which the heights
of the mountain and the tropopause were systematically
varied. In the first pair of experiments, where the upstream
wind speed is constant with height, the tropopause height
varied between 0.3𝜆L and 0.8𝜆L in increments of 0.05𝜆L,
where 𝜆L = 2𝜋U∕NL is the vertical wavelength of a hydro-
static mountain wave in the lower layer (i.e., the tro-
posphere). In the remaining experiments the height of
the tropopause varied between 5 and 15 km in 500 m
increments. The mountain height hm was varied between
100 and 1000 m in 100 m increments in all experiments.
For the first pair of experiments, this corresponds to
non-dimensional mountain heights h̃m from 0.1 to 1.0 with
increments of 0.1.

3.1 Experiment 1: Sharp tropopause, no
wind shear

The upper-layer (the stratosphere) has a static stability of
NU = 0.02 s−1, while the lower layer (the troposphere) has a
static stability of NL = 0.01 s−1. The wind speed is constant
throughout at U = 20 m⋅s−1.

3.2 Experiment 2: Gradual transition
at tropopause

The static stability profile is the same as in the two-layer
soundings, except for the presence of a linear transition in
N over a depth Δz. For a tropopause height zT, the static
stability profile is given by

(a) (b)

F I G U R E 3 Vertical profiles of (a) Brunt–Väisälä frequency N
and (b) horizontal wind speed U for an Experiment 3 case with the
tropopause height set at 10 km

N(z) =
⎧⎪⎨⎪⎩

NL, 0 < z < zT − Δz
2
,

NU, z > zT + Δz
2
,

NL+NU
2

+ (NU−NL)(z−zT)
Δz

, otherwise.
(9)

Two values of Δz were considered, Δz = 1 km and Δz =
2 km. For our values of static stability and wind speed,
these correspond to normalized transition layer depths of
0.08𝜆L and 0.16𝜆L, respectively.

3.3 Experiment 3: Sharp tropopause,
10–30 m⋅s−1 shear

The profiles of U(z) are representative of the midlatitude
westerlies, and the static-stability profile is identical to
the two-layer structure in Experiment 1. The wind speed
increases from 10 m⋅s−1 at the surface to 30 m⋅s−1 at the
tropopause and drops back to a value of 20 m⋅s−1 in the
stratosphere. An example Experiment 3 profile is shown
in Figure 3 for a case with the tropopause at zT = 10 km.
The procedure used to generate U(z) is presented in
Appendix A.

3.4 Experiment 4: Sharp tropopause,
10–50 m⋅s−1 shear

The Experiment 4 soundings are identical to those of
Experiment 3, except that the wind speed increases
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from 10 to 50 m⋅s−1 in the troposphere. The mid- to
upper-stratospheric wind speed remains specified as a con-
stant 20 m⋅s−1.

4 RESULTS

4.1 Experiment 1: Sharp tropopause, no
wind shear

The Experiment 1 soundings admit analytic linear hydro-
static steady-state solutions in wavenumber space, which
can be easily transformed to physical space by an inverse
Fourier transform. Letting lL and lU denote the con-
stant Scorer parameter values below and above the
tropopause, the Fourier-transformed vertical velocity field
for wavenumber k, ŵ(k, z), is given by

ŵ(k, z)=

{
a1 cos(lLz) + b1 sin(lLz) , 0 < z < zT,

a2 cos
[
lU (z−zT)

]
+b2 sin

[
lU (z−zT)

]
, z ≥ zT,

(10)
where

a1 = Uikĥ, (11)

b1 = − sin (lLzT) lL𝛽 + cos (lLzT) lU

sin (lLzT) lU − cos (lLzT) lL𝛽
a1, (12)

a2 = a1 cos (lLzT) + b1 sin (lLzT) , (13)

b2 = a2∕𝛽, (14)

𝛽 =

{
i, k < 0,
− i, k ≥ 0.

(15)

Here ĥ(k) is the Fourier transform of the mountain profile
h(x). This is a simplification of the three-layer solution of
Klemp and Lilly (1975).

Using the polarization relation

p̂(k, z) = − i𝜌0U
k

𝜕ŵ
𝜕z

(16)

to derive the perturbation pressure p′(x, z) from
Equation (10), the normalized cross-mountain pressure
drag

D̃l =
4

𝜋𝜌0NLUh2
m ∫

Lx

0
p′ (x, 0) 𝜕h

𝜕x
dx (17)

is plotted in Figure 4 for the cos4 mountain as a function
of the tropopause height non-dimensionalized by the ver-
tical wavelength of a hydrostatic mountain wave in the
troposphere such that z̃T = NLzT∕(2𝜋U). These analytic

F I G U R E 4 Cross-mountain pressure drag D̃l as a function of
non-dimensional tropopause height z̃T for Experiment 1 computed
by the semi-analytic method (solid curve) and using the linearized
meso12 model run to steady state (points)

results may be compared to the drag obtained from a
series of linearized meso12 simulations in which p′ is
replaced in Equation (17) by the steady-state surface pres-
sure from the numerical simulations (points in Figure 4).
Although the linearized meso12 model is non-hydrostatic,
we compare directly to the hydrostatic analytic solution
because the mountain is wide enough that the response is
largely hydrostatic (a= 20 km, implying NLa/U = 10 and
NUa/U = 20). The pressure drags obtained from linearized
meso12 simulations are in close agreement with the ana-
lytic solution, thereby providing a check on the correctness
of our linearized time-dependent numerical model.

The deviations from the linear uniform-atmosphere
pressure drag for the finite-amplitude case are shown in
Figure 5a, in which the normalized drag is contoured
as a function of the non-dimensional mountain height
h̃m = NLhm∕U and z̃T. Letting p(x, z) be the pressure com-
puted with the nonlinear model at quasi-steady state, the
normalized nonlinear pressure drag is

D̃nl =
4

𝜋𝜌0NLUh2
m ∫

Lx

0
p
[
x, h(x), t

] 𝜕h
𝜕x

dx. (18)

We define the quasi-steady-state pressure as that
occurring at the midpoint of the first interval of dura-
tion Δ(Ut∕a) = 5 after non-dimensional time Ut/a= 20
in which the drag varies by less than 5% of the average
value within the interval. Note that the normalization fac-
tor 𝜋𝜌0NLUh2

m∕4 is the drag that would be obtained from
many GWD parametrizations, namely the drag generated
by linear mountain waves launched by a Witch of Agnesi
mountain in an atmosphere with uniform basic-state wind
U and static stability NL. No drag values are plotted in
Figure 5 for those combinations of hm and zT that do not
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(a) (b)

F I G U R E 5 (a) Normalized cross-mountain pressure drag D̃nl for the Experiment 1 simulations contoured as a function of
non-dimensional mountain and tropopause heights, and (b) amplification of the nonlinear drag relative to that for the corresponding linear
solution. The linear solution is plotted at a mountain height of 0.0. The solid black line indicates a normalized pressure drag or amplification
of 1.0. White areas are plotted for those values of h̃m and z̃T that produce breaking mountain waves. The black dashed line, satisfying
z̃T = 1.17h̃m + 0.5, is an empirical fit to the set of (h̃m, z̃T) along which D̃nl is maximized and is discussed in connection with Figure 13
[Colour figure can be viewed at wileyonlinelibrary.com]

achieve quasi-steady state. Breaking waves do not achieve
quasi-steady state, and therefore our analysis is restricted
to non-breaking waves.

As is well known (Klemp and Lilly, 1975) and evi-
dent in Figure 4, in the limit of small h̃m the pressure
drag is maximized at z̃T = 0.5. Figure 5a shows that, as h̃m
increases, the maximum D̃nl occurs at progressively higher
tropopause heights, a behaviour consistent with Durran
(1992).2 For 0.15 ≤ h̃m ≤ 0.35, the maximum values of D̃nl
exceed 2.5, suggesting that use of typical GWD expressions
for the drag and momentum flux could be in error by that
same factor.

The normalization factor in Equation (18) is for a
single-layer atmosphere, not the corresponding linear
two-layer problem. Therefore, to isolate the effects of
finite amplitude, D̃nl∕D̃l is contoured as a function of h̃m
and z̃T in Figure 5b. Use of the ratio D̃nl∕D̃l also removes
the factor of roughly 1.3 by which the drag over the cos4

mountain exceeds that for the reference Witch-of-Agnesi
mountain. Linear theory closely approximates the 0.65 to
2.56 range over which the nonlinear pressure drag varies
as the tropopause height changes, but the functional
dependence on the tropopause height is different in the
nonlinear case. Due to the shift of the maximum D̃nl
to increasing tropopause heights as the h̃m increases,
an amplification–deamplification couplet is present in
the field of D̃nl∕D̃l. For values of z̃T above 0.5, D̃nl∕D̃l

2In fact, all of our computed pressure drags are within 3% of those in
Durran (1992) once they are adjusted to account for the cos4 shape of
our topography.

increases with increasing mountain height to its max-
imum when (h̃m, z̃T) = (0.4, 0.65), while for z̃T < 0.5 it
decreases as h̃m increases, reaching its minimum when
(h̃m, z̃T) = (0.6, 0.45).

A case with strong finite-amplitude amplification
(h̃m = 0.3, z̃T = 0.55) is illustrated in Figure 6; vertical
velocities and streamlines for the nonlinear solution
are shown in Figure 6b. Relative to the linear solution
(Figure 6a), the nonlinear solution (Figure 6b) has a much
stronger downdraught–updraught couplet over the lee
slope, and the lee trough is sharper. These large-amplitude
short-wavelength features in the lee trough are not present
in the linear simulation because there is little direct
forcing at such wavelengths by the wider topography.

A deamplifying case is shown in Figure 7. While
the amplitude of the nonlinear simulation (Figure 7a)
is clearly reduced compared to the linear simulation
(Figure 7b), there are fewer structural differences between
the linear and nonlinear solutions than there were in the
amplifying case. In particular, the nonlinear solution in the
deamplifying case lacks the short-wavelength perturba-
tions in the lee of the ridge which develop in the nonlinear
amplifying case (Figure 6b).

4.2 Experiment 2: Gradual transition
at tropopause

As might be expected given the results of Teixeira and
Argaín (2020), when there is a more gradual tran-
sition at the tropopause, the difference between the

http://wileyonlinelibrary.com
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(a) (b)

F I G U R E 6 Vertical velocity (colour shading) and streamlines (black lines) from the (a) linear and (b) nonlinear meso12 simulations of
an Experiment 1 case with nonlinear amplification in which z̃T = 0.55𝜆L and h̃m = 0.3. The grey line indicates the tropopause, and grey
stippling indicates the stratosphere [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)

F I G U R E 7 As Figure 6, but for a case with nonlinear deamplification in which z̃T = 0.45𝜆L and h̃m = 0.6 [Colour figure can be viewed
at wileyonlinelibrary.com]

troposphere–stratosphere solutions and those for a sin-
gle layer of constant N and U is reduced. The normal-
ized cross-mountain pressure drag D̃nl for cases with
Δz = 1 km, shown in Figure 8a, maintains the general
trend of a shift of the peak drag to higher tropopause
heights as the mountain height is increased, but the mag-
nitude of the finite-amplitude enhancement is reduced
substantially from that apparent in Figure 5a. The devi-
ation of the nonlinear drag from the linear solution
D̃nl∕D̃l (Figure 8b) is also reduced relative to the sharp

tropopause result in Figure 5b, even after account-
ing for the changes induced in the linear solutions
by the more gradual change in static stability at the
tropopause.

This lack of sensitivity to finite-amplitude processes
is greater in the Δz = 2 km case. The variation in D̃nl
(Figure 8c) is smaller than in the Δz = 1 km case, and
there is only a modest trend for the maximum drag
to occur at higher tropopause heights as the mountain
height increases. The difference between the drag for
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(a)

(c)

(b)

(d)

F I G U R E 8 Normalized drag D̃nl as in Figure 5a for the Experiment 2 simulations with (a) Δz = 1 km and (c) Δz = 2 km.
Amplification of the drag relative to the linear solution D̃nl∕D̃l as in Figure 5b for cases with (b) Δz = 1 km and (d) Δz = 2 km [Colour figure
can be viewed at wileyonlinelibrary.com]

the linear and nonlinear solutions is particularly small
(Figure 8d).

4.3 Experiment 3: Sharp tropopause,
10–30 m⋅s−1 shear

When moderate forward shear (cross-mountain wind
speed increasing with height) and a sharp tropopause
are present, the finite-amplitude enhancement of
non-breaking waves increases relative to the no-shear
case. Normalized drag D̃nl for Experiment 3 is contoured
as a function of the dimensional mountain and tropopause
heights in Figure 9a. The dimensional values of hm and zT
are used in the shear flow cases for easy comparison with
observations, and because there is no unique choice for U
in the computation of the non-dimensional forms. Never-
theless, to facilitate comparison with the previous results,
we still compute D̃l and D̃nl, taking U to be the value at
the surface. The range of tropopause heights is sufficiently
broad that D̃nl exhibits a quasi-periodic structure in the

tropopause height zT, with local maxima around 6.5 and
12 km. The values of D̃nl in these local maxima exhibit the
trend seen previously in which there is a shift of the maxi-
mum drag to higher tropopause heights as the mountain
height increases. The maximum D̃nl of 5.55 occurs for
hm = 700 m, zT = 7 km and is over twice the 2.56 maximum
in the no-shear case.

In contrast to Experiment 1, nonlinearity almost exclu-
sively acts to increase the pressure drag (Figure 9b). There
are significant regions where D̃nl∕D̃l is greater than 2, with
a maximum greater than 7. The de-amplification factor,
on the other hand, is never less than 1/2. The maximum
in D̃nl∕D̃l occurs in the case hm = 800 m, zT = 8 km, which
is particularly interesting because the linear solution is
slightly deamplifying relative to the one-layer linear solu-
tion, but the nonlinear solution is strongly amplifying. The
linear and nonlinear solutions for this case are compared
in Figure 10. Although they do not directly contribute to
the drag, weak partially trapped waves are present in the
nonlinear simulation (Figure 10b), while there are none
present in the linear case (Figure 10a). The generation
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(a) (b)

F I G U R E 9 (a) Normalized drag D̃nl and amplification of the drag relative to the linear solution D̃nl∕D̃l, as in Figure 5, for the
Experiment 3 simulations [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)

F I G U R E 10 As Figure 6, but for the 10–30 m⋅s−1 shear sounding with a tropopause height of zT = 8 km and a mountain height of
hm = 800 m [Colour figure can be viewed at wileyonlinelibrary.com]

of trapped waves due to short-wavelength forcing in the
nonlinear lee wave has been previously well documented
(Smith, 1976; Durran and Klemp, 1982).

4.4 Experiment 4: Sharp tropopause,
10–50 m⋅s−1 shear

When the shear is stronger and U(z) increases from
10 m⋅s−1 at the surface to 50 m⋅s−1 at the tropopause,
the increase in the local WKB vertical wavelength of
hydrostatic mountain waves in the troposphere places

the region of maximum amplification in both D̃nl and
D̃nl∕D̃l at typical midlatitude tropopause heights between
9 and 11 km (Figure 11). The amplification is similar to
that for the the weaker shear in Experiment 3, although
it occurs at lower mountain heights. In particular, D̃nl
is greater than 4 when hm is just 300 m and zT = 9 km.
D̃nl reaches a maximum of 6.6 when hm = 700 m and
zT = 10 km, while D̃nl∕D̃l exceeds 9.5 when hm = 800 m and
zT = 11 km. Very strong nonlinear effects in non-breaking
mountain waves can develop at very small mountain
heights when there is strong forward shear in the
troposphere.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


METZ and DURRAN 2701

(a) (b)

F I G U R E 11 (a) Normalized drag D̃nl and amplification of the drag relative to the linear solution D̃nl∕D̃l, as in Figure 5, for the
Experiment 3 simulations [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)

F I G U R E 12 As Figure 6, but for Experiment 4 with hm = 800 m and zT = 11 km [Colour figure can be viewed at wileyonlinelibrary.com]

As in Experiment 3, at most combinations of hm
and zT, nonlinear effects amplify rather than damp the
solution. Vertical velocities and streamlines from the
strongly amplifying case hm = 800 m and zT = 11 km
are shown in Figure 12. Leaky trapped waves are
pronounced in the nonlinear solution but, as in the
previous Experiment 3 with weaker shear, they are
absent in the linear case. The vertical velocities and
trapped wave amplitudes in the nonlinear Experi-
ment 4 simulation are both significantly stronger than
in Experiment 3, despite both cases having equal
values of hm.

5 DISCUSSION

Not all finite-amplitude effects are nonlinear. For example,
the finite-amplitude free-slip condition at the lower
boundary, which requires the the component of velocity
normal to the topography to vanish, may be written for our
2D geometry as

u {x, h(x), t} dh
dx

− w {x, h(x), t} = 0. (19)

Because the topographic profile h(x) is externally
specified, the preceding is clearly linear in the unknown
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F I G U R E 13 Normalized pressure drag as a function of
mountain height along the dashed lines in Figures 5a, 9a and 11a
for the no-shear case (blue), the lower-level/upper-level maximum
in the 10–30 m⋅s−1 case (orange/green), and for the 10–50 m⋅s−1

case (red) [Colour figure can be viewed at wileyonlinelibrary.com]

variables u and w. Durran (1992) noted there is an
effective reduction in the depth of the troposphere over
finite-amplitude mountains, and found that tropopause
heights giving the strongest drag can be adjusted to cap-
ture this finite-amplitude behaviour by generalizing the
tuning criteria for maximum drag in linear hydrostatic
mountain waves from zT = 0.5𝜆L to zT − 1.5hm = 0.5𝜆L.
A similar adjustment works well over the wider range of
mountain heights and tropopause elevations considered
in our no-shear simulations, for which normalized drags
are plotted in Figure 5a along with a dashed line follow-
ing the extrema in D̃nl given by zT − 1.17hm = 0.5𝜆L (fit
by eye; note that this is close to simply calculating the
tropopause height as the distance above the mountain
top, instead of the surrounding flat ground). Plotting D̃nl
as a function of mountain height along this dashed line
yields the almost-horizontal blue curve in Figure 13, indi-
cating that linear theory for the two-layer problem can
give the correct drag, at least for the strongest events, after
making a finite-amplitude adjustment to the depth of the
troposphere.

However, similar attempts to apply two-layer linear
theory via a simple adjustment of the effective depth
of the troposphere did not work well for the cases
with vertical wind shear. Dashed lines indicating the
approximate (hm, zT) values for which D̃nl achieves a
local maximum appear in Figures 9a and 11a; the nor-
malized pressure drags along these curves are plotted
as a function of hm in Figure 13. These curves are
not quasi-horizontal, but rather indicate that, in the
wind-shear simulations, a significant amplification of

D̃nl occurs beyond that which can be accounted for
by simple reductions in the tropospheric depth above
finite-amplitude mountains.

The additional amplification of the drag in the
wind-shear cases is associated with a significant nonlinear
strengthening of the lee-side trough, as may be illustrated
by plotting the local contribution to the pressure drag
p′ (dh/dx) at each point on the topography. Figure 14
shows the behaviour of this local drag for three different
environments: no-shear with zT = 8.16 km (̃zT = 0.65),
winds increasing from 10 to 30 m⋅s−1 with zT = 8 km, and
winds increasing from 10 to 50 m⋅s−1 with zT = 11 km.
Individual curves for mountain heights of 200, 400, 600,
and 800 m are plotted for each environmental profile. In
all three cases, the largest contribution to the pressure
drag occurs along the lee slopes as a result of low surface
pressures under the lee-side trough. The increase in the
amplitude of this lee-side contribution, as hm increases
from 400 to 600 to 800 m, is much more pronounced in the
two cases with wind shear. In those cases the rate at which
the drag increases with hm is also much faster than the
h2

m scaling which would be expected from linear theory
if the influence of finite mountain height on the effective
tropospheric depth is neglected.

Streamlines and vertical velocities for the linear and
nonlinear hm = 800 m, 10–30 m⋅s−1 simulations are com-
pared in Figure 10. The dramatic intensification of the
lee trough responsible for the increased local drag in
Figure 14b is clearly apparent. Nonlinear wave inter-
actions have substantially amplified short-wavelength
contributions to the wave downstream of the trough axis.
At a height of z= 2 km, the half wavelength between
the trough and the downstream ridge (325≤ x ≤ 340)
is approximately 15 km. The terrain itself is too wide
to directly force strong 30 km-wavelength perturba-
tions – instead they are forced by the nonlinear wave
dynamics. A similar situation is apparent for the
10–50 m⋅s−1 simulations shown in Figure 12, for which
the local drag contribution is plotted in Figure 14c.

Smith (1976) proposed that nonlinear flow over a bar-
rier can trigger a strong, short-wavelength trough, thereby
forcing larger-amplitude lee waves downstream than those
which would be obtained from a linear calculation. Fur-
ther evidence of such nonlinear amplification appears in
Durran, (1992, 2015), and in all the cases in these pre-
vious studies, the environmental profile supporting the
trapped waves has a two-layer structure with high static
stability in the lower layer. In contrast to these previous
studies, the decrease in the Scorer parameter with height
responsible for partially trapping the waves in Figures 10b
and 12b is produced by the increase in U with height
without any variation of the static stability within the
troposphere.
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F I G U R E 14 Local pressure
drag for the (a) no-shear case, (b)
10–30 m⋅s−1 shear case, and (c)
10–50 m⋅s−1 shear case. Blue, orange,
green, and red lines are for mountain
heights of 200, 400, 600, and 800 m,
respectively. Tropopause heights are
z̃T = 0.65 for the no-shear case and
zT = 8 km and 11 km for the
10–30 m⋅s−1 and 10–50 m⋅s−1 shear
cases, respectively. For reference, the
mountain profile is plotted as a black
dashed line [Colour figure can be
viewed at wileyonlinelibrary.com]

(a)

(c)

(b)

The vertical structures of the partially trapped waves
supported by the environmental profiles of the Scorer
parameter in the shear-flow cases in Figures 10 and 12
were evaluated using the eigenvalue–eigenfunction solver
described in Durran et al. (2015) as modified in Metz
et al. (2020). Figure 15a,c shows the vertical profile of the
Scorer parameter squared for the 10–30 and 10–50 m⋅s−1

shear flows, respectively, while Figure 15b,d illustrates
their modal structures by profiles of ŵ(z), defined such
that w(x, z) = Re

{
ŵ(z)eikx}. Also noted in Figure 15b,d

are the horizontal wavelengths 𝜆x = 2𝜋∕k for each mode
and their downstream decay rate D𝜆, defined as the frac-
tion of the wave amplitude lost over a distance 𝜆x. The
upper-tropospheric layer throughout which l2 < k2, and
the waves decay, is only a few kilometres deep (the layer
just below the tropopause where the red curve lies to the
left of the blue line in Figure 15a,c), so it is not surprising

that both modes decay rapidly downstream as they leak
energy upward, losing roughly 38% and 30% of their ampli-
tude over one horizontal wavelength. The wavelengths and
vertical structure of the downstream waves in the numeri-
cal simulations closely match those shown in Figure 15.

The extent to which these partially trapped modes
contribute to the drag is unclear. The ability of trapped
waves to exert a drag on the flow was demonstrated in the
classic paper by Bretherton (1969), yet the trapped waves
themselves do not transport momentum vertically. Rather
their interaction with the mountain produces a vertical
divergence in the horizontally averaged momentum flux
(Durran, 1995; Lott, 1998; Broad, 2002). The situation for
these rapidly decaying waves which do transport momen-
tum vertically (note the sinusoidal oscillations in the
stratosphere in Figure 15b,d) is more complex and needs
further study. Nevertheless, the pronounced amplification
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F I G U R E 15 Vertical profiles of (a, c) the square of the Scorer
parameter l (red) and (b, d) the real part of the Fourier-transformed
vertical velocity ŵ(z) for the trapped wave mode supported by the
(a, b) 10–30 m⋅s−1 shear case with a tropopause height of 8 km and
(c, d) 10–50 m⋅s−1 shear case with a tropopause height of 11 km. The
horizontal wavenumber k of this mode is plotted as the blue vertical
line in (a, c). The grey shading in (b, d) indicates the interval[
− ||ŵ|| , ||ŵ||], where ||ŵ|| is the magnitude of ŵ. The parameters 𝜆x

and D𝜆 indicate the horizontal wavelength and downstream decay
per wavelength, respectively [Colour figure can be viewed at
wileyonlinelibrary.com]

of these waves clearly illustrates the consequences of the
nonlinear scale interactions in the high-drag simulations
with significant vertical shear.

6 CONCLUSIONS

Our simulations have demonstrated that mountain waves
encountering a sharp tropopause can experience large
changes in amplitude and substantial deviations in

momentum flux compared to that which would be present
in an environment with constant values of N and U
representative of the conditions near mountain-top level.
Many GWD parametrizations will, therefore, be in error
because they assume the low-level momentum flux is
proportional to the constant-N-and-U drag in linear
waves launched by the unblocked flow over the top
of the ridge. Note in particular that large deviations
between constant-N-and-U GWD estimates and the actual
momentum fluxes can occur at amplitudes below the
wave-breaking threshold.

Linear theory is often applied to the mountain wave
problem using WKB theory, but that theory assumes a
slowly varying background state that is violated at a sharp
tropopause. Linear theory can alternatively be formulated
for distinct atmospheric layers with matching conditions
between the layers, including cases with linear variations
in U(z) within each layer (Klemp and Lilly, 1975), thereby
allowing a reasonably close match to observed sound-
ing profiles. Nevertheless, our results suggest that the
finite-amplitude solutions can differ dramatically from
such multi-layer linear solutions, which is consistent with
previous findings in the more limited case without verti-
cal wind shear (Durran, 1992). The differences between
the linear and finite-amplitude results are large enough
that there would be little reason to try to incorporate com-
plex multi-layer linear models with vertical wind shear in
GWD parametrizations.

In the simplest two-layer case with no vertical wind
shear, linear theory accurately predicts the range over
which the drag varies in response to changes in the
tropopause height, but the functional dependence on zT
is incorrect. Finite-amplitude effects tend to shift the
extrema in the drag to higher tropopause heights as the
mountain height increases, decreasing the effective depth
of the troposphere (Figure 5). Similar to Durran (1992),
the optimal tropopause height for maximum drag could
be estimated by empirically correcting the condition from
linear theory through the inclusion of a term propor-
tional to the mountain height. We also demonstrated that,
at least for the strongest cases, good estimates of the
finite-amplitude drag could also be obtained from linear
theory using the same empirical correction.

The sensitivity of the surface pressure drag
to finite-amplitude effects increases when the
cross-mountain winds increase with height. In this case,
multi-layer linear theory does not accurately predict the
range of possible pressure drags. For example, in the
10–30 m⋅s−1 shear case, D̃l ranges from approximately
0.5 to 3.0, while D̃nl varies from 0.5 to 4.8. In the 10–50
m⋅s−1 shear case, strong nonlinear amplification relative
to typical GWD estimates can occur over mountains that
are just 250 m high (Figure 11a). Nonlinear dynamics are
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important in the high-drag cases with wind shear, and
it is not possible to obtain good agreement with linear
theory by simply compensating for changes in the effec-
tive tropospheric depth above finite-height topography.
Leaky trapped waves appear in the high-drag simulations
with significant wind shear, triggered by short-wavelength
structures in the lee-trough immediately downstream
of the mountain. These waves match the vertical-mode
structure of the leaky modes supported by the oncom-
ing background flow as computed using linear theory.
The strong nonlinear response in vertically sheared
environments is qualitatively similar to that previously
documented in cases where a significant decrease in the
Scorer parameter with height is produced, not by increases
in wind speed, but by decreases in the upper-tropospheric
static stability (Durran, 1986). The influence of these leaky
waves on the drag, and the influence of the tropopause on
these leaky waves, are topics for further study.

An important additional influence of vertical shear,
due to the change in the vertical wavelength from the vary-
ing wind speed, is to modulate the level at which the drag
is most sensitive to partial reflections from the tropopause.
The dry Brunt–Väisälä frequency, averaged over the full
depth of the troposphere, is usually near 0.01 s−1. Given
an NL of 0.01 s−1, an environmental wind profile in which
U(z) increases linearly from 10 m⋅s−1 near the surface to
50 m⋅s−1 at the tropopause will be conducive to very strong
nonlinear amplification of the mountain-wave drag when
zT has a typical midlatitude value in the range between 8
and 11 km.

We have focused on the impact of partial back reflec-
tions of vertically propagating waves at the tropopause,
and on the influence of strong vertical wind shear, because
they are ubiquitous mid-latitude features (Birner, 2006).
Other sharp changes in atmospheric structure, such as the
presence of an inversion layer near mountain top-level, are
also known to have a strong influence on the amplitude
of mountain waves (Durran, 1986, figures 10–13), and
these influences extend into the wave-breaking regime.
A thorough analysis in the influence of elevated inver-
sions and the behaviour of breaking mountain waves in
environments with wind shear and static-stability lay-
ering is beyond the scope of this paper. Nevertheless,
our results demonstrate that finite-amplitude effects in
mountain waves cannot be reliably accounted for with-
out numerically computing the actual wave response.
As a consequence, the associated GWD is not easily
parametrized, and errors due to improper representation
of GWD in global weather and climate models are likely
to remain non-trivial unless the grid spacing becomes
small enough to resolve the waves. The current efforts
to develop and migrate to global cloud-resolving mod-
els could provide the required numerical resolution and

thereby promise to improve representation of orographic
wave drag (Satoh et al., 2019).
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APPENDIX A. GENERATION OF SHEAR
SOUNDINGS

The shear soundings are constructed differently in the
troposphere and in the stratosphere. In the troposphere,
we specify N = 0.01 s−1 and linear shear

U(z) = UT − 10
zT

z + 10, (A1)

where zT is the height of the tropopause and UT (m⋅s−1)
is the wind speed at the tropopause. In the stratosphere,
we employ a more complex procedure designed to obtain
a smooth profile that eventually transitions to a constant
value of US = 20 m ⋅ s−1. Note that the definition of the
Scorer parameter (Equation (2)) can be rearranged as a
second-order nonlinear ordinary differential equation for
the basic-state wind speed U:

d2U
dz2 − N2

U
+ Ul2 = 0. (A2)

This equation can be solved numerically as an “initial
value problem” in the height variable z, for which purpose
we use the SciPy odeint function. Defining 𝜁 = z − zT,
we specify

U (𝜁 = 0) = UT and U′ (𝜁 = 0) = (UT − 10) ∕zT.

In addition, we specify a constant value for the Scorer
parameter, l = 0.02∕Um m−1, where Um = (UT + 20)/2 is
chosen as the average of the wind speed at the tropopause
and the constant upper-stratospheric value.

Specifying N2 will completely specify the profile of U.
However, in general, a constant value of N in the strato-
sphere will result in large sinusoidal variations in U with
height. To prevent this, we still specify a constant value of
N = 0.02 s−1, but we transition from the oscillatory wind
profile to a constant U profile by fitting an elliptic wind
profile in between. The wind profile in the elliptic transi-
tion region is given by

Ue(z) = U0 −

√
a2

[
1 − (z − z0)2

b2

]
. (A3)

This equation has four free parameters: the U- and
z-coordinates of the centre of the ellipse U0 and z0 and
the length of the semi-major and semi-minor axes a and
b. We in turn specify four matching conditions, two at
each boundary of the elliptic transition region. The lower
boundary is specified as being at the first point z= zi above
the tropopause where the curvature of the wind profile
is zero, while the upper boundary is specified to be Δz =
3 km above the lower boundary. At both of these points we

F I G U R E A1 Demonstration of the construction of a wind
profile in the stratosphere. The dashed curve indicates the solution
for a constant Scorer parameter l. The dot indicates the first point
with zero curvature above the tropopause, while the dot-dashed
curve indicates the ellipse used to transition between the constant-l
and constant-U profiles. The resulting wind profile is shown as the
solid curve.

require that both the wind profile and its first derivative
be continuous. The resulting equations for each parameter
are given by

U0 =
U (zi)U′ (zi) Δz + U(zi)2 − U2

S

U′ (zi) Δz + 2 [U (zi) − US]
, (A4)

z0 = zi + 𝛥z (A5)

a2 = (US − U0)2, (A6)

and b2 = (U0 − US)2Δz2

2U (zi)U0 − U(zi)2 − 2USU0 + U2
S

, (A7)

where US = 20 m⋅s−1 is the constant wind speed above the
transition region, Δz = 3 km is the thickness of the transi-
tion region, and U (zi) and U′ (zi) are the wind speed and
first derivative of the wind speed at the lower boundary
zi of the transition region. An example result from this
procedure is shown in Figure A1.

APPENDIX B. COMPUTATION OF LINEAR
STREAMLINES

Linear solutions are obtained by assuming all pertur-
bations about a reference state are arbitrarily small. Under
this small-amplitude assumption, the vertical excursions
of streamlines about a horizontal reference line would be
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infinitesimal, and they would simply appear as horizontal
lines. The amplitude of linear solutions is scaled up when
approximating the flow over a finite-amplitude mountain,
but this leads to an inconsistency between two possible
ways to display the streamlines.

Streamlines in the 2D x–z plane satisfy

dz
dx

= w
u
. (B1)

In the standard finite-amplitude computation, the
velocities on the right side of the preceding are evaluated
at each point along the streamline, in which case the (x, z)
coordinates of a streamline originating at the point (x0, z0)
may be computed as a function of the parameter s using

x(s) = x0 + ∫
s

0
u {x (𝛼) , z (𝛼)} d𝛼, (B2)

z(s) = z0 + ∫
s

0
w {x (𝛼) , z (𝛼)} d𝛼. (B3)

Streamlines computed in this manner are dashed in
Figure B1 for one-layer constant-N-and-U linear flow over
a Witch-of-Agnesi mountain. Note that the surface stream-
line does not follow the mountain profile (the lowermost
solid line). For steady adiabatic flow, this procedure gen-
erates lines identical to those that would be obtained by
applying a standard contouring algorithm to the poten-
tial temperature field. As with streamlines, if isentropes
are plotted in this manner, they will not coincide with the
mountain profile.

To obtain a streamline that follows the mountain, it is
necessary to return to the small-amplitude assumption by
neglecting the functional dependence of u and w on the
amplitude of the streamline displacement. This requires
replacing z(𝛼) in Equations B2 and B3 with z0. Consistent
with the linearization assumption, u must be approxi-
mated by the basic-state horizontal velocity U. The coordi-
nates (x̃, z̃) of such streamlines satisfy

x̃(s) = x0 + U(z0)s, (B4)

z̃(s) = z0 + ∫
s

0
w
{

x̃(𝛼), z0
}

d𝛼. (B5)

Streamlines plotted using Equations (B4) and (B5) are
shown as solid lines in Figure B1. The surface streamline

F I G U R E B1 Comparison between two methods of plotting
linear streamlines in flow from left to right over a Witch of Agnesi
mountain: dashed lines use Equations (B2) and (B3); solid lines use
Equations (B4) and (B5). The mountain profile coincides with the
lowest solid streamline.

perfectly follows the mountain contour. Over the moun-
tain, the magnitudes of the slopes of the solid streamlines
are similar around z= 2.3 and 4.6 km, but they are oppo-
site in sign. In contrast, the dashed streamlines are much
steeper than the solid streamlines at 4.6 km, and less steep
at 2.3 km. In this case where U is constant with height,
the dashed lines are actually streamlines for the solution
to Long’s equation (Equation (1)) for flow over a moun-
tain whose profile matches the lowest dashed streamline in
Figure B1.

We have used Equations (B4) and (B5) in all plots of
linear solutions in this paper because in most respects this
choice more faithfully represents the linear solution. But
there is one drawback to this approach: when the ampli-
tude is sufficiently large and the streamline spacing is suffi-
ciently tight, sets of (x̃, z̃) streamlines can cross. Such cross-
ing streamlines are a manifestation of the inconsistency
resulting from computing solutions under an assumption
of infinitesimal amplitude and then scaling up the ampli-
tude of the result.


