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Downslope Windstorm Forecasting: Easier with a Critical Level, but Still Challenging
for High-Resolution Ensembles
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ABSTRACT: Strong downslope windstorms can cause extensive property damage and extreme wildfire spread, so their
accurate prediction is important. Although some early studies suggested high predictability for downslope windstorms,
more recent analyses have found limited predictability for such winds. Nevertheless, there is a theoretical basis for expect-
ing higher downslope wind predictability in cases with a mean-state critical level, and this is supported by one previous ef-
fort to forecast actual events. To more thoroughly investigate downslope windstorm predictability, we compare archived
simulations from the NCAR ensemble, a 10-member mesoscale ensemble run at 3-km horizontal grid spacing over the
entire contiguous United States, to observed events at 15 stations in the western United States susceptible to strong downslope
winds. We assess predictability in three contexts: the average ensemble spread, which provides an estimate of potential predict-
ability; a forecast evaluation based upon binary-decision criteria, which is representative of operational hazard warnings; and a
probabilistic forecast evaluation using the continuous ranked probability score (CRPS), which is a measure of an ensemble’s
ability to generate the proper probability distribution for the events under consideration. We do find better predictive skill for
the mean-state critical-level regime in comparison to other downslope windstorm—generating mechanisms. Our downslope
windstorm warning performance, calculated using binary-decision criteria from the bias-corrected ensemble forecasts, per-
formed slightly worse for no-critical-level events, and slightly better for critical-level events, than National Weather Service
high-wind warnings aggregated over all types of high-wind events throughout the United States and annually averaged for
each year between 2008 and 2019.
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1. Introduction isotropic turbulence. Echoes of the idea that terrain enhances
mesoscale predictability continue to this day.

Updating the linear analysis in Klemp and Lilly (1975),
Nance and Colman (2000) conducted two-dimensional nonlin-
ear simulations to investigate the predictability of downslope
windstorms at seven locations throughout the western United
States. The performance of their model differed between
cases with and without a mean-state critical layer (a layer in
which the cross-mountain flow drops to zero or reverses direc-
tion relative to that at lower levels). When no mean-state crit-
ical level was present, the model seriously overpredicted the
maximum gusts, often by more than 22 m s~ '. On the other
hand, the errors in the maximum gusts were centered about
zero in those cases with mean-state critical levels.

A mean-state critical level caps the upward propagation of
energy carried by gravity waves launched by flow over a

namical model driven by synoptic-scale numerical weather mountain barrier. Studies using semianalytic and numerical
forecasts appears to be that of Klemp and Lilly (1975), who models (Smith 1985; Durran and Klemp 1987; Bacmeister and
used a multilayer linear model to forecast windstorms in Pierrehumbert 1988) show that this capping effect generates a
Boulder, Colorado. Anthes and Baumhefner (1984) cited this ~downslope wind response over a wide range of nondimen-
study as evidence that mesoscale phenomena generated by ~ sional critical level heights, suggesting therefore that down-
the interaction of synoptic-scale systems and known topo- slope wind events occurring beneath mean-state critical levels
graphic barriers could potentially be forecast over much lon- ~May be comparatively easy to forecast. Indeed, Lawson and

ger lead times than the predictability time scales estimated by ~ Horel (2015) found a 4-day predictability lead time in ensem-
Lorenz (1969) for similar size circulations in homogeneous ble forecasts of the 1 December 2011 Wasatch windstorm,

which occurred beneath a critical level near 350 hPa.

Another process that leads to strong downslope winds is
wave breaking, where the flow above the mountain and lee
slope becomes stagnant or reversed, forming a so-called “self-

Corresponding author: Dale R. Durran, drdee@uw.edu induced” critical level (Peltier and Clark 1979). Because there

Downslope windstorms in the lee of mountains are high-
impact weather events, where the peak winds have been
known to exceed 50 m s~ ! (Durran 1990). Direct wind dam-
age from these events can be severe, and they can also drive
wildfires, as occurred in the vicinity of Marshall, Colorado, on
30 December 2021 (Fovell et al. 2022). Therefore, in areas
prone to these windstorms, including for example the Colorado
Front Range and the Wasatch Front of Utah, accurate prediction
with as much lead time as possible is important. Although meso-
scale models are clearly capable of producing simulations repre-
sentative of actual events (Colle and Mass 1998; Cao and Fovell
2016), previous studies regarding the predictability of downslope
windstorms have led to differing, and sometimes contradictory,
results.

The earliest attempt to predict downslope winds using a dy-
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is a strong bifurcation of the downslope wind response depend-
ing on whether or not a mountain wave amplifies sufficiently to
break, windstorms that occur under these conditions are partic-
ularly difficult to forecast (Doyle and Reynolds 2008). Both
multimodel (Doyle et al. 2011) and initial-condition (Reinecke
and Durran 2009) ensemble reforecasts of a wave-breaking
event during the Terrain-Induced Rotor Experiment (T-REX)
program further suggest that windstorms generated under such
conditions can be quite sensitive to minor changes in the
upstream flow and therefore have very limited predictabil-
ity. More specifically, Fovell et al. (2022) found that 28-h
lead time forecasts of the 30 December 2021 Marshall fire
failed to predict the windstorm because a subtle error in the
initial synoptic-scale analysis shifted an upstream region of
sharp horizontal wind shear roughly 120 km too far to the
north.

Strong downslope winds can also occur in the absence of a
mean-state critical layer and without any wave breaking if a
layer of strong static stability is present near mountain-top
level in the cross-mountain flow, with weaker stability aloft. Al-
though windstorms produced by such “static stability layering”
appear to be more predictable than those generated by wave
breaking, ensemble simulations of a static stability layering case
from T-REX showed that the predictability lead time for that
event was less than 12 h (Reinecke and Durran 2009).

These previous studies used a variety of approaches to study
the predictability of downslope winds. Several investigations
used 2D nonlinear models: Nance and Colman (2000) conducted
single deterministic simulations of many different cases, whereas
just a few cases were investigated by Doyle and Reynolds (2008)
using initial-condition ensembles and by Doyle et al. (2011) us-
ing multimodel ensembles. Three-dimensional ensembles were
employed in Reinecke and Durran (2009) and Lawson and
Horel (2015), but as with the 2D ensemble studies, they focused
on just a couple observed events.

One yet-to-be-employed methodology would be to conduct
high-resolution 3D ensemble simulations of a very large num-
ber of real-world cases. Until recently it has been impractical
to conduct such a study due to its high computational cost.
However, archived data from high-resolution operational me-
soscale ensembles have begun to appear. The National Center
for Atmospheric Research (NCAR) mesoscale ensemble cov-
ered the contiguous United States at 3-km horizontal grid
spacing and featured 10 ensemble members launched once
per day over a 2.5-yr period from April 2015 to December
2017 (Schwartz et al. 2019).

In the following we use data from the NCAR ensemble to
examine the predictability of downslope windstorms at 15
locations in the western United States in three contexts. We
will compare the potential predictability of windstorms that
develop in the presence and in the absence of a mean-state
critical level by comparing their ensemble spread in section 3.
We then investigate practical aspects of downslope windstorm
prediction using two different approaches. The first, presented
in section 4, evaluates yes/no windstorm hindcasts in terms
of the probability of detection (POD), false alarm ratio
(FAR), and critical success index (CSI) using biased-
adjusted wind speed output from the ensemble. Our second
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verification method, the continuous ranked probability score
(CRPS), accounts for errors in the ensemble mean and pe-
nalizes for overly wide ensemble spread. The CRPS results
are presented in section 5. We present our conclusions in
section 6.

2. Methodology
a. NCAR ensemble description

The NCAR ensemble was a real-time convection-allowing
ensemble designed and run by NCAR from 7 April 2015 to
30 December 2017. It was initialized at 0000 UTC each day
and integrated to a model time of 48 h. The ensemble con-
sisted of 10 WRF-ARW members run at 3-km horizontal grid
spacing over the continental United States. All differences
among the ensemble members were produced by varying the
initial conditions; the dynamical core configuration and pa-
rameterization choices remained fixed among the ensemble
members. Ensemble perturbations were generated from a
continuously cycling ensemble Kalman filter (EnKF). Eighty
(initially 50 until 2 May 2016) ensemble members with 15-km
horizontal grid spacing were utilized in the data assimilation
system. These members were updated every 6 h by assimilat-
ing a quality-controlled observational dataset. Every 24 h, at
0000 UTC, 10 of the members were downscaled to 3-km hori-
zontal grid spacing and used to initialize the 48-h forecasts
(Schwartz et al. 2019).

Output from all ensemble members is archived at NCAR,
but not all fields are available. In particular, much archived
output relates to convective indices useful for forecasting se-
vere thunderstorms, and many of the three-dimensional prog-
nostic variables have either been omitted or are saved at too
coarse vertical resolution to adequately characterize the verti-
cal structure of the cross-mountain flow. Therefore, we have
necessarily restricted our use of this data to 10-m wind speed,
which is output at a time resolution of 1 h.

The configuration of the ensemble is such that there are
two ensemble forecasts for every forecast time within the veri-
fication period: one forecast from the ensemble initialized at
0000 UTC of the forecast day and one forecast from the en-
semble initialized at 0000 UTC the day before. Therefore, for
each forecast time, there are 20 verifying ensemble members:
10 from each of the two initialization times. The forecast lead
times for the actual events vary throughout the day, from as
short as 1 and 25 h in the case of an event at 0100 UTC to as
long as 24 and 48 h for a forecast for 0000 UTC. (Technically,
there is also an ensemble forecast with a lead time of 0 h, but
since the analysis is not useful for forecasting purposes or for
analyzing predictability, we have omitted it.)

One might envision that day-1 forecasts will show more
predictability than forecasts for day 2 because of the shorter
lead times. To investigate this, our analysis of the ensemble
spread is conducted as a function of lead times from 1 to 48 h.
Our CRPS analysis also treats the short and long lead time en-
sembles separately. On the other hand, our yes/no forecasts for
the set of potential and realized downslope wind events are
computed using all 20 members (10 from each initialization),
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but are for multihour verification windows, thereby minimizing
the dependence on the precise forecast lead time.

b. Station selection

Stations for the analysis were selected from a filtered Mesowest
dataset (Horel et al. 2002). With the assistance of geographic
information system (GIS) software and the U.S. Geological
Survey’s 3D Elevation Program (3DEP; Sugarbaker et al. 2014)
terrain dataset, we selected 15 stations in the lee of mountains
across the western United States, which experience high winds ar-
riving from a downslope direction. All but two of these stations
were selected from locations lying at the bottom of the sloping
terrain in very close proximity to the mountain barrier, a configu-
ration which includes well-known windstorm-susceptible sites
near Boulder, Colorado, and Centerville, Utah. Some of the sta-
tions we identified are less well known, such as one in west Texas
that experiences downslope flow from the Guadalupe Mountains
and one in eastern Washington that experiences downslope flow
from a ridge near the Hanford Site. In contrast to the other 13,
the two southern California stations are positioned higher up the
slope.

Our set of stations include CO109, which recorded one of
the highest wind gusts during the December 2021 Marshall
Fire windstorm, and SILSD, which is one of the windiest sta-
tions in San Diego County (Cao and Fovell 2016, 2018). A full
list of stations, including the direction of the mountain-normal
vector, is provided in Table 1. These stations are broadly dis-
tributed through the western United States, as shown in
Fig. 1. The orientation of the stations relative to the local ter-
rain and the mountain-normal vector is shown in Fig. 2.

All of these stations have observations of high sustained
wind and gusts within the forecast period of the NCAR en-
semble. The time series for each station was manually quality
controlled to remove periods of obviously bad data. Little bad
data were present, with the exception of a period at CO109
from 18 November 2015 to 13 March 2016. To determine a
model forecast wind speed for comparison with these obser-
vations, we find the nearest two grid cells corresponding to
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FIG. 1. Location of the 15 selected observation stations in the western
United States.

the location of the observation station. Then, for each ensem-
ble member, we take the value from the cell with the highest
wind speed. Using the maximum over a pair of cells better ac-
counts for potential mismatches between the true and model
topography while still remaining local to the corresponding
observation station.

c. Critical-level dataset

Because the NCAR mesoscale ensemble archive does not
contain enough upper-level data to determine the presence
and height of a critical level, this is estimated for each event
using the ERAS reanalysis dataset from the European Centre for
Medium-Range Weather Forecasts (Hersbach et al. 2020). Al-
though the ERAS data allow us to characterize the approximate

TABLE 1. List of the 15 selected stations by Mesowest ID and their general location. The direction of the mountain-normal vector
and the mean forecast-minus-observation bias (see section 2d) at each station is also provided. Westside stations are italicized.

Mesowest station ID Location Mountain normal direction (°) Mean bias (m s~ 1)
CO109 Boulder, CO 270 -3.6
NWTC Boulder, CO 270 -1.9
SRNNV Sierra Nevada Mountains, NV 230 -5.5
PSGT2 Guadalupe Mountains, TX 311 3.0
GALN2 Sierra Nevada Mountains, NV 277 4.8
IDPC1 Owens Valley, CA 268 3.8
WSM16 White Sands Missile Range, NM 294 -5.8
HEOC Hanford Site, WA 213 -7.9
RBYNV Ruby Mountains, NV 304 1.8
CEN Centerville, UT 90 10.6
UPI138 Centerville, UT 90 6.4
AP611 Centerville, UT 90 5.2
SILSD San Diego County, CA 99 =5.0
HP016 San Diego County, CA 80 =51
WSM39 White Sands Missile Range, NM 61 =79
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FIG. 2. Station location relative to terrain from the USGS 3DEP dataset. The top three rows show stations on the east side of
mountain ranges, and the bottom row shows the westside stations. Filled contours indicate terrain height, with darker shades of gray
indicating progressively higher terrain. Terrain contours are in 125-m intervals. The mountain-normal vector for each station is
plotted as a red arrow. Each panel shows a 0.25° X 0.25° region.
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elevation (or absence) of a critical level during each observed or
forecast downslope windstorm, we have no information about the
presence and elevation of any critical levels in the forecasts from
each individual ensemble member.

One concern is whether or not the critical levels found in
the ERAS dataset are mean-state critical levels or are self-
induced by breaking mountain waves. The ERAS reanalysis
was conducted using the ECMWF Integrated Forecast System
at an effective horizontal grid spacing of 31 km (Hersbach et al.
2020), which is too coarse to resolve the velocity perturbations
in breaking mountain waves. We, therefore, interpret all criti-
cal levels in the ERAS data as mean-state critical levels.

d. Bias adjustment

Downslope windstorms tend to be very gusty (e.g., Durran
1990, Fig. 4.11), and the maximum gusts are more indicative
of the potential storm impacts than the mean wind speed. The
surface winds in the NCAR ensemble do not represent the
maximum gusts carried to the surface by boundary layer tur-
bulence, and they are also not forecasts for the precise loca-
tion of each anemometer. To compare the modeled winds
with the observed gusts, we evaluate a bias adjustment to the
model forecasts.

To compute the bias at each station individually, we need
to establish roughly compatible thresholds for the identifica-
tion of downslope winds in both the forecasts and the obser-
vations. As a first preliminary step, we determine the average
difference between the component-wise ensemble mean wind

speeds:

=2 —2

uens + UEI’lS’ (1)
where u,  and v  are the means of the west—east and

south—north wind components, respectively, and the observed
gusts over all observed downslope-directed winds at all sta-
tions during the NCAR ensemble period. For this compari-
son, we include all events with observed gusts greater than
10 m s~ ! blowing from within +45° of the vector normal to
the main mountain ridge (the “windstorm quadrant”). On av-
erage, the model winds turn out to be 5.7 m s~ less than the
observed gusts. We then compute the bias individually at each
station over the set of all events with winds within the windstorm
quadrant having either observed gusts of at least 20 m s~ ' or
forecast wind speeds of at least 15 m s~ ! in at least two ensemble
members. Here the 15 m s~ threshold uses the average overall
observed minus forecast difference in downslope windiness, and
is taken as a round-number approximation to (20 — 5.7) ms™ ..
The two-ensemble-member threshold is chosen to be relatively
nonrestrictive, thereby allowing a large sample size.

The bias could have been computed as the difference be-
tween the modeled winds and the observed wind gust in the di-
rection of the mountain normal vector, as determined from the
topographic data used by the model. But the model topography
may differ from the actual topography, and even if they were
identical, the mountain normal vector may not be perfectly
aligned with the direction from which the strongest downslope
winds typically blow at the anemometer. Therefore, if the wind
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direction is within the windstorm quadrant, we interpret the full
wind speed as the forecast downslope wind. On the other hand,
to account for cases with significant differences in wind direc-
tion, if the winds are blowing from outside the windstorm quad-
rant, we take the forecast speed as the * magnitude of the
projection of the model-simulated velocity onto the mountain
normal vector.

To prevent nondownslope wind events from making it into
our dataset, we apply another filter, which requires the cross-
mountain wind component at or near the mountain top to be
greater than 8 m s~ !. The magnitude of the criterion is moti-
vated by Durran (1990), who notes “[Conditions] favorable
for downslope winds occur when the wind is directed across
the mountain (roughly within 30° of perpendicular to the
ridgeline) and the wind speed at mountaintop level exceeds a
terrain-dependent value of 7 to 15 m s~ 1.” This additional fil-
ter is implemented by taking a vertical cross section in the
same plane as the mountain-normal vector. This cross section
extends horizontally upstream 1° of latitude/longitude from
the observation station. The maximum elevation within this
cross section is taken as the mountaintop height. We then
take the winds within the wedge extending horizontally +30°
of the mountain-normal vector and vertically between the
mountaintop height and 2 km above the mountaintop height.
If the maximum magnitude of these winds is greater than
8 m s~ !, the winds at this time are considered to be downslope
winds and the data point is included in our final dataset; oth-
erwise, it is neglected. Since above-surface fields are not avail-
able for the NCAR ensemble throughout most of the period,
the cross sections are necessarily computed using ERAS data
as a proxy.

Applying this procedure to all forecast and/or observed
events at each station, we obtain the average biases for the
forecast winds minus the observations listed in Table 1. At
four of the 15 stations, the magnitude of the biasis 6 m s~ ' or
greater. Two of these are overforecasts, with a maximum posi-
tive bias of 10.6 m s~ ! at one of the stations near Centerville,
Utah (CEN). The other two are underforecasts with a negative
bias of —7.9 m s~ ! at both the Hanford Site in Washington
State (HEOC) and White Sands Missile Range, New Mexico
(WSM39).

Examples of the evolution of the observed and bias-
corrected forecast winds, together with the upper-level flow,
are shown for a pair of events in Fig. 3. The velocity compo-
nent aloft in the cross-mountain direction is plotted as a func-
tion of time and pressure level at CO109 (Fig. 3a) and SILSD
(Fig. 3b), with the sign chosen so the downslope flow direction
is positive. Values below —1 m s~ ! indicate a critical level,
which is shown as a black dashed line. Although theoretically
stagnation (0 m s™') is sufficient for a critical level, we use
1ms " of reversed flow to ensure a more robust critical-level
signature. Note the absence of a critical level throughout the
time series of CO109, while one is always present for the
SILSD case.

The bias-adjusted winds at both stations are plotted as a
function of time in the lower panels. Because the bias adjust-
ment is negative, the weak winds prior to both events are ad-
justed upward by 3.6 and 5.0 m s~' at CO109 and SILSD,
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FIG. 3. Example windstorms at (a),(c) CO109 in Boulder, CO; and (b),(d) SILSD in Sill Hill, CA. (top) Time-height
cross sections of the cross-mountain wind component (color fill) and critical level height (when present, dashed).
(bottom) The bias-adjusted wind speeds for each ensemble member (thin colored curves), mean ensemble wind speed
(thick red curve), and observed wind gusts (thick black curve).

respectively. The adjusted winds give a very good forecast of
the high winds and their timing at SILSD (Fig. 3d), though
the weaker wind period, which was not factored into the
bias computation and is not used in our later downslope
wind event scoring, is overforecast. At CO109 there are
both timing and amplitude errors in the forecast (Fig. 3c),
and once again an overestimate of the adjusted winds out-
side our period of interest. When forecasts are scored in
section 4c, we will consider the influence of the size of the
forecast window, i.e., the allowable timing error, on the veri-
fication statistics.

3. Ensemble spread in critical-layer and no-critical-
layer events

a. Computing ensemble spread

If the WRF model and the data assimilation system were
perfect, the potential limits to the predictability of these wind-
storms arising from the current level of observational uncer-
tainty can be estimated by examining the spread among the
ensemble members. Comparing the ensemble spread with the
root-mean-square error (RMSE) of a set of forecasts is also
one method for determining whether an ensemble is well cali-
brated (Fortin et al. 2014). Two slightly different formulas
have been used to compute the average ensemble spread. The
first takes the average over all forecasts (at a given lead time)
of the standard deviations of the ensemble members for each
forecast:

@

Brought to you by University of Washington Libraries | Unauthenticated | Downloaded 08/02/23 09:49 PM UTC

The second takes the square root of the average variance of
the ensemble members:

_ l N 1 n .
ES, =\ § & 2 iy — 7). ®)

j=1n — 1=

In the preceding, » is the number of ensemble members, N is
the number of verification times, u;; is the wind speed of the
ith ensemble member at verification time j, and u i is the en-
semble mean wind speed at verification time j. Note that the
difference between the two metrics lies in when the square
root operator is applied.

Only ES, is valid for determining whether or not an ensem-
ble has the proper amount of spread (Murphy 1988; Fortin
et al. 2014). However, ES; does have one advantage: it is the
mean of some sample; namely, that of the standard deviations
of the ensemble members, and therefore it is more natural to
compute in conjunction with other summary statistics, such as
the standard deviation and confidence intervals of the stan-
dard deviation distribution. Therefore, we use (2) to perform a
statistical analysis of the spread to determine whether or not
the difference in spread between no-critical-level and critical-
level cases are significant, and we use (3) to assess the reliability
of the ensemble by comparing it with the root-mean-square-
error of the ensemble.

Our focus will be on the NCAR ensemble’s performance
on windstorm-relevant forecasts, specifically the union of the
set of observed and the set of forecast events. For those cases
satisfying our criterion on the cross-mountain wind compo-
nent, we define the set of observed windstorms as those with
gusts greater than 20 m s~ ! within the windstorm quadrant,
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and the set of forecast windstorms as those having at least two
ensemble members with bias-corrected wind speeds greater
than 20 m s~ ! in the windstorm quadrant. The 20 m s !
threshold was chosen as a round value that would yield lots of
events while lying between the 15.6 m s~ ! gust threshold for
red-flag warnings in southern California (which also include
relative humidity and fuel dryness criteria) and the 33 m s™!
gust threshold for NWS high wind warnings in many moun-
tainous regions. Using thresholds defined by forecast values
in individual ensemble members instead of an overall sum-
mary statistic like the ensemble mean is motivated by the pos-
sibility of a bifurcation in the strength of the simulated winds
(Doyle and Reynolds 2008) in which the ensemble members
exhibit either very strong winds or a minimal response. The
total number of hours satisfying the preceding windstorm cri-
teria across all stations is 13 154.

b. Comparing potential predictability

The windstorm-relevant forecasts are sorted into those with
no critical level (no-CL), low-critical-level cases (low-CL) in
which the critical level is lower than 8 km AGL, and high-
critical level cases (high-CL) in which a critical level occurs
between 8 km and 100 hPa. The distinction between the
low-CL and high-CL categories is motivated by the findings in
Nance and Colman (2000) that their 2D windstorm model
performed better in critical-level cases in which the height of
the critical level was lower than 8 km. They suggested that the
low-CL case might be more predictable because the synoptic-
scale flow would set the wave breaking level, whereas the pro-
cesses determining the wave amplitude, including perhaps
wave breaking, would be relatively independent of the eleva-
tion of the critical level in the high-CL cases. We consider crit-
ical levels above 100 hPa to be too high to have a significant
impact on downslope wind development and, therefore, count
these as no-CL cases.

The total number of cases in each category is plotted as a
function of lead time in Fig. 4a. The dataset contains between
170 and 250 no-CL cases at every forecast lead time. Given
the predominance of upper-level westerly flow in midlati-
tudes, it is not surprising that there are fewer low-CL cases,
with 20-70 cases at each forecast lead time. The high-CL cases
are rare, with around 20 cases per lead time. The bias-corrected
ensemble-mean wind speeds are plotted as a function of fore-
cast lead time in Fig. 4b. The no-CL ensemble mean has bias-
corrected wind speeds that decrease slightly with time and
average about 17 m s~ 1. This ensemble average is less than the
20 m s~ ! bias-corrected wind speed criterion for a simulated
downslope wind because only two of the ten ensemble mem-
bers need to exceed 20 m s~ for the period to qualify as high-
wind forecast. Both critical-level cases show a diurnal cycle
with higher mean winds of 19-21 m s~ ! dropping below 18 m s~
around 0000 UTC, or equivalently, near forecast lead times 0, 24,
and 48 h. No such diurnal signal is seen in the observations them-
selves (not shown). Lead times from a 0000 UTC forecast of 0,
24, and 48 h are the early evening hours in the western United
States, so this spurious diurnal signal in the NCAR ensemble may
be produced by errors in the boundary layer parameterization,
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FIG. 4. Key parameters in no-CL events (blue), low-CL events
(orange), and high-CL events (green) as a function of forecast lead
time: (a) number of data samples, (b) ensemble-average mean
bias-corrected wind speeds, and (c) ensemble-average standard de-
viation in forecast wind speed ES;. Shading in (c) shows the 95%
confidence intervals for the ensemble standard deviation.

although it is difficult to understand why such errors would not
also impact the no-CL cases.

The ensemble spread for each category ES; is plotted as a
function of forecast lead time in Fig. 4c. The spread for the
no-CL cases increases almost monotonically with forecast
lead time until about 1.5 days, and then remains nearly cons-
tant through the end of the forecast period. The ensemble
spread for the high-CL cases is significantly smaller, just about
half that for the no-CL cases. The ensemble spread for the
low-CL cases generally lies between the other two cases, ex-
cept that it increases sharply around 0000 UTC and exceeds
that of the no-CL events around lead times of 2 and 24 h.
Also plotted as shading in Fig. 4c are 95% confidence intervals
for the statistical distributions of the ensemble spread at all lead
times. The shading for the high-CL ensemble spread lies almost
completely below that for the no-CL cases, suggesting the dif-
ference in the ensemble spread between the no-CL and high-
CL cases is statistically significant. In contrast, at several times
the confidence intervals for the ensemble spread in the low-CL
cases overlaps, and even exceeds, that for the no-CL events,
making the statistical significance of the differences in ensemble
spread less clear cut between those windstorm conditions.

One important metric for an ensemble prediction system
is whether it has the proper amount of spread to encompass
the proper range of possible outcomes. One method of



1382

WEATHER AND FORECASTING

VOLUME 38

14
2 12 A
E
810
& —— No-CL RMSE
% g4 Low-CL RMSE
£ —— High-CL RMSE
P —==- No-CL Average Spread
L:) 6 - Low-CL Average Spread
8 === High-CL Average Spread
o
(%]
=
o 2

0 T T T T T

1 11 21 31
Forecast Hour

FIG. 5. Root-mean-square error (solid) and sample-size corrected ensemble spread V11/10ES, (dashed), as a function
of lead time for the no-CL (blue), low-CL (orange), and high-CL (green) cases.

determining whether an M-member ensemble has the
proper amount of spread is check whether the sample-size
corrected spread [(M + 1)/M]"*ES, matches the root-mean-

square error:
1< 2
RMSE = N]; @ — ), Q)

where N is the number of verification times, ﬁj is the ensem-
ble-mean bias corrected wind speed at verification time j,
and it]. is the verifying observation. If the distribution of the
ensemble members is unchanged when the observation is
substituted for one of the ensemble members, the RMSE
should match the sample-size corrected spread (Fortin et al.
2014).

The RMSE and sample-size corrected spread are plotted as
a function of forecast lead time for the no-CL, low-CL, and
high-CL cases in Fig. 5. The RMSE for all three types of
events is much larger than the ensemble spread. Some lack of
spread might be anticipated because initial condition ensem-
bles are typically underdispersive (Buizza et al. 2005), and
orographic precipitation forecasts generated using the NCAR
mesoscale ensemble were shown to lack spread by Gowan
et al. (2018). Nevertheless, with typical spread values less than
one-quarter to one-half the RMSE, the ensemble is clearly
failing to capture the true variability of downslope wind
events. If the NCAR mesoscale ensemble were well cali-
brated, the larger ensemble spread in the no-CL cases would
be a very strong indicator that the no-CL events have lower
predictability than those cases with a critical level. But even in
the current situation, in which the ensemble is underdisper-
sive, the larger ensemble spread of the no-CL cases suggest
that they are less predictable than those cases with critical
levels,
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Surprisingly, and in contrast to the spread, there is no sys-
tematic increase in RMSE with forecast lead time, although
the low-CL RMSE does show a diurnal variation in phase
with that superimposed on an upward trend with time for the
low-CL average spread. Aside from this diurnal signal, the
RMSE is a noisy function of lead time, ranging between 5 and
13 m s~'. The mean RMSE over all lead times is 9.6, 8.6,
and 83 m s~ ! for the no-CL, low-CL, and high-CL cases,
respectively.

4. Warn/no-warn forecasts
a. Evaluation metrics

We divided the roughly 2.5-yr period over which NCAR
mesoscale ensemble forecasts are available into 6-h verifica-
tion windows. Our results are not strongly sensitive to the size
of the verification window, as will be discussed in section 4c.
We evaluate forecast performance for each window period as
a function of hits, false alarms, and missed events. All events
are required to satisfy the criterion for cross-mountain winds.
Downslope windstorms are deemed to have occurred when
there was an observed gust of at least 20 m s~ within the
windstorm quadrant at any time during the forecast window.
Individual ensemble members are deemed to have forecast a
windstorm if they show bias-corrected surface winds in excess
of 20 m s~ within the windstorm quadrant at any time during
the forecast window. Downslope wind warnings from the en-
semble forecast system (actually hindcasts) are issued when at
least N7 ensemble members forecast a windstorm, where N7
is the ensemble threshold number that ranges from 2 to 18 in
our tests. (Recall that for this analysis the ensemble consists
of 10 members from the forecast initialized at 0000 UTC on
the date of the event and 10 from the forecast initialized at
0000 UTC the day before.)
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FIG. 6. Number of hits (green), false alarms (blue), and misses (orange) for no-CL cases at
each station with more than 20 total hits, false alarms, and misses using N7 = 4 as the ensemble
threshold number. Also noted are the corresponding values of POD, FAR, and CSI with the

leading decimal point omitted.

Each window period is also categorized as a no-CL or
critical-level (CL) event using winds from the ERAS data at
the closest grid point to the given station. We again define a
critical level as occurring at the lowest elevation where the
wind speed exceeds at least 1 m s~ ! in the direction opposite
the low-level cross-mountain flow. For some purposes, we will
again distinguish between low- and high-critical-level cases,
depending on whether the critical level is above or below
8 km AGL. If a critical level is present over 50% or more of
the forecast window, we designate the case as a critical-level
event.

The performance of our windstorm/no-windstorm forecast
decision is evaluated using three metrics: the probability of
detection (POD), false alarm ratio (FAR), and critical success
index (CSI). These metrics have been utilized in many previ-
ous analyses of various binary (yes/no) forecasting problems
(e.g., Schaefer 1990; Brooks and Correia 2018). Define a as
the number of hits, where the ensemble forecasts a windstorm
and one occurs (true positives), b as the number of false
alarms when a windstorm is forecast but none is observed
(false positives), and c as the number of missed events where
the ensemble does not forecast a windstorm but one is ob-
served (false negatives). The probability of detection is de-
fined as the ratio of successfully forecast windstorms to all
observed windstorms:

a
a—+c

POD =

®)

The false alarm ratio is the ratio of false alarms to all forecast
windstorms:

b

FAR=a+b.

(6)

The critical success index (alternatively known as the threat
score) is the ratio of successfully forecast windstorms to all
cases where windstorms were a forecast issue:
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a

I=———.
cs a+b+c

™)

The CSI can also be expressed as a combination of POD and
FAR; it achieves a maximum value of unity when POD = 1
and FAR = 0, corresponding to a perfect forecast. CSI there-
fore provides one method of objectively combining POD and
FAR into a single metric.

b. Forecast performance

The number of hits, false alarms, and misses for no-CL
cases at each eastside station are charted in Fig. 6, using
N7 = 4 as the ensemble threshold number. The POD, FAR
and CSI computed from these values is noted above the bar
for each station. Only stations with at least 20 total hits, false
alarms, and misses are plotted. There are almost no down-
slope wind events for stations on the west side of the moun-
tains unless a critical level is present, therefore the only
westside station shown in Fig. 6 is HP016.

Forecast performance varies significantly between stations.
The POD ranges between 0 and 0.79, while the FAR varies
between 0.08 and 0.64. Reflecting the combined POD and
FAR scores, the CSI ranges from very poor values of 0 to
0.47. Despite the modest Ny = 4 threshold, missed events are
a huge problem at two Nevada stations GALN2 and RBYNV
where the POD is 0 and 0.13, respectively, and mountain nor-
mal vectors are directed toward the southeast. Interestingly,
SRNNV, which is located near GALN?2 but has a mountain
normal vector directed to the northeast, performs much bet-
ter, with POD of 0.67 and the second highest CSI of the
group. Overprediction is most serious in CO109 (Colorado)
and HEOC (Washington), with FAR of 0.63 and 0.64, respec-
tively. (The effect of increasing N7 on FAR will be discussed
in connection with Fig. 9.)

Corresponding results for CL cases are shown are shown in
Fig. 7. As noted in connection with Fig. 5a, there are fewer
CL cases than no-CL cases. Yet in contrast to the no-CL
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F1G. 7. As in Fig. 6, but for CL cases.

cases, which were essentially nonexistent for stations on the
west side of mountain ranges, several eastside stations experi-
enced some critical-level events. Synoptic charts for the east-
side CL events often showed backing winds in connection
with high-amplitude troughs that produced slight reversed
flow at upper levels. Results are presented in Fig. 7 for all sta-
tions in which there were a total of at least 20 hits, false
alarms, and misses during CL events.

The best results for the CL cases were obtained at SILSD
(highest overall CSI of 0.70) and HP016 in the San Diego
area, and at WSM39 in New Mexico (highest overall POD of
0.90). Despite the success of the 1 December 2011 Wasatch
bora forecasts in Lawson and Horel (2015), the forecasts for
the stations around Centerville, Utah, are very poor. Only
one event was forecast at AP611 for any of the 20 observed
events, yielding POD and CSI scores of 0.05. Similar results
were obtained for stations CEN and UP138, although there
were slightly less than 20 cases at these stations, so they are
not plotted in Fig. 7. The preponderance of misses in the Wa-
satch events also contrasts with the comment in Lawson and
Horel (2015) that “Further, subjective examination of other
WREF high-resolution deterministic model forecasts for na-
scent downslope windstorms along the Wasatch Front sug-
gests the model tends to overforecast their occurrence.”

To examine any systematic differences in the performance
of the no-CL and CL forecasts, all the cases in each category
are aggregated together, and their average POD, FAR and
CSI are shown in Fig. 8. When aggregated together, statistics
for the low-CL and high-CL cases are almost identical, and
therefore closely match the results for all CL cases combined.
This similarity is robust across various choices of wind speed
thresholds (not shown). The results for the aggregated no-CL
cases are distinctly worse than the all-CL events with POD
dropping from 0.61 to 0.52, FAR rising from 0.39 to 0.51, and
CSI falling from 0.44 to 0.34. Analyzing the short (1-24 h) and
long (25-48 h) forecast lead times separately, led to no signifi-
cant differences in these metrics, which is surprising, but simi-
lar to the behavior of the RMSE shown in Fig. 5. In summary,
the scores in Fig. 8 suggest the critical level cases are indeed
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easier to forecast than windstorms that occur in the absence
of a critical level.

c. Sensitivity to parameters
1) NUMERICAL RESOLUTION

While it is not possible to change the grid spacing used in
the archived WRF simulations, we can make a few observa-
tions about forecast performance at stations adjacent to wider
or narrow ridges that are better or more poorly resolved in
the WRF simulations. The axes in Fig. 2 span 0.25° in latitude
and longitude, or equivalently about 6.5 grid points east—west
and just over 9 grid points north-south. The station locations
adjacent to the most poorly resolved topographic barriers are
HEOC, WSM16, and WSM39, for which the CSI are 33, 47
(both no-CL), and 59 (CL), respectively. The performance at
these stations is therefore approximately equal to, or better
than, the average for all stations in their respective no-CL and
CL categories (Fig. 8). On the other hand, the hindcasts for
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FIG. 8. Comparison of no-CL and CL events for all stations ag-
gregated together. Statistics for CL events separated into low- and
high-CL classes are also shown. The meaning of bar colors is equiv-
alent to Fig. 6.
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size of the verification window for sizes of 1, 2, 3, 4, 6, 8, and 12 h:
no-CL (light teal), low-CL (red), and high-CL (purple) cases. End-
points corresponding to wy of 1 and 12 h are indicated for each

FIG. 9. Performance diagram for no-CL (light teal), low-CL
(red), and high-CL (purple) cases as a function of ensemble mem-
ber threshold. Endpoints corresponding to 2- and 18-member
thresholds are indicated for each curve. Lines of equal CSI are
solid black, with corresponding values along the inside top of the
plot. Dashed black lines indicate bias values, with corresponding
values denoted along the outside top and right of the plot. Lo . .

(purple)—although switching to N7 = 6 would give a slightly
. . bett I, Ny = 4 gi the 1 t bias. It is int ting t I{
stations adjacent to some of the best resolved topography per- etter GSL, Ny AN
that the best Ny threshold requires a windstorm in only 1/5 of the
form roughly equal to, or worse than, the relevant no-CL or .. o
: . . total ensemble members. Waiting for a majority of the ensemble
CL full-station-set average. Such stations include NWTC, members to indicate a windstorm before issuing a warning would
C0109, IDPCI (all no-CL with CSI of 35, 28, and 33), and ! . g g
. . . . not optimize the CSI. Fig. 9 also shows the same key takeaways
AP611 (CL with CSI of 5). Finer grid spacing should allow . .o .
. . evident in Fig. 8 continue to hold over the range 2 = Ny = 10;
more accurate process studies of downslope winds at all the
. . . . . namely, that no-CL cases are harder to forecast than CL cases,
stations; in particular it might reduce the underforecast bias at and that low- and hieh-CL. forecasts exhibit similar error
the poorly resolved stations, which is —7.9 m s~' at both W & ’
HEOC and WSM39. But as suggested by this comparison, in-

curve.

3) WIDTH OF VERIFICATION WINDOW

creasing the numerical resolution is not guaranteed to actually
improve bias-corrected forecasts. One might expect the FAR to drop (and SR to increase) as
the size of the verification window w, increases, and as shown
2) ENSEMBLE-MEMBER THRESHOLD, NT in Fig. 10, this is indeed the case, with the most significant im-
provements occurring before wy rises to 6 h. Interestingly, as

The sensitivity of the results shown in Fig. 8 to the warning wy increases from 1 to 12 h the POD improves for no-CL
threshold N can be assessed using the performance diagram in cases, but it degrades for both low-CL and high-CL events.
Fig. 9, in which the POD is plotted for N7 = 2,4, ..., 18 asa  pe drop in POD with increasing w, suggests that unforecast
function of the success ratio, SR = 1 — FAR (Roebber 2009).  ¢yenis are appearing at the beginning or end of the verifica-
Reference curves consisting of isolines of CSI are plotted as ;o window, and it is surprising that this might be more of a
solid curves in Fig. 9, along with dashed curves indicating the problem in CL cases, which are nominally expected to be less
sensitive than no-CL cases to small changes in the synoptic-
bias — number of forecast events _a+ b _ POD. sc_ale flow. The CSI for the no-CL c.ases i.ncreases subste}ntially

number of observed events g + ¢ SR with larger w; because of the combined improvements in both

the POD and SR. In contrast, the improvement in SR is

largely canceled by the degradation in POD in both CL cases,
thereby leaving the CSI almost independent of w;. The bias is
reduced for all three categories as w; increases from 1 to 6 h,
and is almost perfect at 6 h. There is little further change in the
bias in the no-CL category as w; is further increased to 8 and
12 h, whereas the bias shifts toward under forecasting events in

bias, defined as

If a forecast system produced perfect results, the POD, SR,
and bias would all be unity and would yield a point at the up-
per right corner of the performance diagram. For the no-CL
forecasts (light teal), choosing Ny = 4 gives both the best CSI
and the least bias. Similarly, N7 = 4 is optimal for the low-CL
cases (red), and it is also a good choice for the high-CL cases
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both CL categories. This shift toward underforecasting with in-
creasing w, in CL cases would again be consistent with the ap-
pearance of unforecast events at the beginning or end of the
verification window.

d. Comparison with general high-wind forecasts

As discussed in the introduction, Anthes and Baumhefner
(1984) suggested that terrain-induced mesoscale circulations
might be predictable at longer lead times than many other
mesoscale phenomena because the synoptic-scale flow can be
forecast comparatively far in advance and the terrain itself
can be specified with extremely high accuracy. Moreover,
they cited an early attempt at downslope wind prediction
(Klemp and Lilly 1975) as key evidence for this possibility. It
is beyond the scope of this study to conduct a rigorous com-
parison between the predictability of downslope winds and
high winds in non-mountainous regions, by for example, se-
lecting another 15 stations in flat terrain and repeating the
above analysis. Nevertheless, one perspective from which we
can view this 40-yr-old hypothesis is provided by the perfor-
mance diagram in Fig. 11, which again shows forecast scores
for our optimal Ny = 4, wy, = 6-h ensemble predictions for the
no-CL, low-CL, and high-CL categories, plotted along with the
scores averaged over all National Weather Service (NWS) high-
wind warnings and over each fiscal year from 2008 to 2019.

The vast majority of the NWS high wind cases do not in-
volve downslope winds and may be taken as an indication of
the operational skill in forecasting high-wind events that are
not downslope. Although the NWS CSI scores are tightly
clustered between about 0.34 and 0.41, these forecasts im-
proved significantly over this period in that the average fore-
cast lead time gradually increased from 6 to 12 h (Durran
2020). The NWS speed threshold criteria for high-wind warn-
ings in nonmountainous regions are typically sustained winds
greater than 40 mph (18 m s ') or gusts greater than 58 mph
(26 m s™'); in most mountainous regions the thresholds for
winds and gusts increases to 50 and 75 mph (22 and 33 m s 1),
respectively. The thresholds for the NWS high wind events
are therefore higher than our bias adjusted 20 m s~ ! gust
threshold—their events are more extreme.

As apparent in Fig. 11 the annual averaged CSI for the
NWS high-wind forecasts was equal to or better than the 0.34
value obtained with our ensemble for the no-CL events, but
slightly worse than the 0.43-0.44 values achieved in the CL
cases. In contrast to the ensemble-based warnings, which are
unbiased, the NWS forecasts are biased toward overforecast-
ing the number of events. On balance, this rough comparison
suggests that downslope winds developing in the absence of a
critical layer are harder to forecast than an “average” extreme
high-wind event. The CL cases, on the other hand, may be
marginally easier to forecast.

5. Evaluating the entire ensemble distribution

The preceding evaluates the success with which downslope
windstorm warnings can be issued based on various thresh-
olds in the number of ensemble members exceeding a set
value for the bias-adjusted wind speed. While very relevant to
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FIG. 11. Performance diagram, as in Figs. 9 and 10, but for
National Weather Service high-wind warnings for the period from
October 2007 to September 2019. Values for each fiscal year
(1 Oct=30 Sep) are plotted in orange. Corresponding values for
no-CL, low-CL, and high-CL cases are plotted in teal, red, and
purple, respectively.

the operational forecast process, this approach does not fully
assess the predictive information in the full ensemble. As a
complimentary metric, we evaluate the continuous ranked
probability score CRPS (Hersbach 2000). The CRPS penal-
izes both narrow distributions with an incorrect mean (i.e., an
overly confident, but incorrect, forecast) and overly broad dis-
tributions, even if they have the correct mean (i.e., extremely
uncertain forecasts).

For a forecast variable x, the CRPS measures how well the
cumulative distribution function (CDF) of the ensemble P(x)
matches the CDF of the observation P,(x), and is computed
as

o0

CRPS = j [P(x) — P,(0)]" dx. 8)

—o0

Denoting the observed value of x as x,, the probability density
function (PDF) of the observation is p,(x) = 6(x — x,), and
the CDF of the observation is

P = [ oy du= i -3, ©)

where H(x) is the Heaviside function:

_ 10, x<0,
He) = {1, x = 0. (10)
The PDF of an n-member ensemble forecast is given by
< 1
p(x) = 2= 8(x — x,), (11)

i=1Nn
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F1G. 12. (a),(b) Schematic of the calculation of CRPS for the example 10-member ensembles in two windstorm
cases. Forecast wind speeds x for each ensemble member are indicated by the upward black ticks along the x axis.
Note two ensemble members forecast wind speeds of 15.7 m s~ ! in (b). The CDFs for the ensemble forecasts P(x) are
plotted in orange with shading; the CDF for the observations P,(x) is plotted as the heavy blue line. The green area
illustrates the integral of [P(x) — P,(x)]>. The CRPS values are noted in each plot.

where x; is the value forecast by the ith ensemble member.
Therefore,

P(x) = L p.(u) du = g%H(x ~x). (12)

Note the CDFs are dimensionless, so the CRPS inherits the
dimensions of the forecast variable x owing to the integral
in (8). Lower CRPS scores are better.

To gain intuition about the numerical values of the CRPS
in our application, the CDFs and the integrand in (8) are illus-
trated for two windstorm cases in Fig. 12. Here, as in the en-
semble spread analysis, the short and long lead times are
treated as two separate 10-member ensembles with ensemble-
forecast windstorms defined as 2 (out of 10) members greater
than 20 m s~ ! within the windstorm quadrant. One case, with
a CRPS of 0.62 m s~ !, has narrow spread and only a small
error in the ensemble mean. The other case, with a CRPS of
5.1m s !, has a larger spread and much larger error in the en-
semble mean—although the observation does lie within the
ensemble spread.

The frequency distribution of CRPS scores for the no-CL,
low-CL, and high-CL categories are shown in Fig. 13. These
values are normalized by the total number of events in each
category. There are no CRPS values below 0.1 m s™*, but the
number of good forecasts with CRPS = 0.5 ramps up very
rapidly in all three cases.

Once again, the performance on the no-CL cases is the
worst, with a median CRPS of 4.14 m s~ ' compared to
the low-CL events with median CRPS of 3.42 m s~ ', and the
high-CL events with a median of 3.90 m s~'. Similarly, the
third-quartile value is lowest for the low-CL category and
highest for the no-CL category. Finally, the mean CRPS
scores give the same relative ranking for each category: no-
CL 5.95, low-CL 5.15, and high-CL 5.64 m s~ '. Analyzing
CRPS as a function of forecast lead time led to no significant
results (not shown).
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The CRPS measures the quality of the full ensemble, and it
is interesting that the slightly worse performance of the high-
CL ensemble forecasts relative to the low-CL cases is consis-
tent with the CSI scores obtained using ensemble number
thresholds above Ny = 4 (Fig. 9).

6. Discussion and conclusions

The relatively long predictability lead times for synoptic-
scale weather patterns have long been thought to enhance the
predictability of terrain-induced mesoscale flows. Downslope
windstorms have been suggested as a prime example of high-
impact mesoscale weather events that inherit enhanced pre-
dictability from the synoptic scale (Anthes 1984). On the
other hand, more recent research has suggested downslope
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F1G. 13. Violin plots of the CRPS distributions for the no-CL
(blue), low-CL (orange), and high-CL (green) cases, normalized by
the total number of events in each case. White dots indicate distri-
bution medians, and vertical black bars span the distance between
the first and third quartiles. The black whiskers represent points
that fall within 1.5 times the interquartile range. Thin dashed refer-
ence lines pass through the no-CL and low-CL medians.
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windstorms have low predictability because they are highly
sensitive to small changes in the large-scale flow (Reinecke
and Durran 2009). Nevertheless, the 1 December 2011 down-
slope wind event along the Wasatch range provides an exam-
ple of a downslope windstorm with excellent long-lead-time
predictability (Lawson and Horel 2015). A mean-state critical
level was present during the Wasatch event, and previous the-
oretical and modeling work suggests there may be higher pre-
dictability when such a critical level is present. In this study
we have tested the hypothesis that the presence of a mean-
state critical level tends to enhance the predictability of down-
slope windstorms, while also investigating the predictability of
downslope windstorms in general.

The key and unique tool used in our analysis was the ar-
chive of NCAR mesoscale-ensemble-system forecasts, which
provided 10 members integrated forward for 48 h from differ-
ent initial conditions once daily on a 3-km horizontal grid
over a period of about 2.5 years. Bias-corrected surface wind
forecasts from this archive were compared against observa-
tions at 15 downslope-windstorm-prone observational stations
across the western United States. Using a 6-h verification win-
dow, our dataset included over 2000 observed and/or forecast
windstorm cases, giving a large sample size and allowing us
to account for overprediction of nonevents by the model.
We characterized the predictability in three ways: by evalu-
ating the ensemble spread, the performance of yes/no wind-
storm forecasts, and the continuous ranked probability
score (CRPS).

Comparing the ensemble spread allows us to estimate the
potential predictability of events with and without mean-state
critical levels in a hypothetical situation with a perfect fore-
cast model and data assimilation system. The spread in the
no-CL cases was roughly double that in the high-CL cases
(critical level above 8 km AGL), with the spread for the low-
CL category lying in between. Although there were relatively
few high-CL cases, the difference in spread between them and
the no-CL cases was significant. The significance of the differ-
ence in spreads between the low-CL and the no-CL cases was
less clear cut. Nevertheless, the overall results suggest greater
potential predictability for downslope winds that occur be-
neath a mean-state critical than for those occurring when no
critical level is present. In all categories (no-CL, low-CL and
high-CL), the ensemble spread was much smaller than the
RMSE of the forecasts, indicating that the ensembles are
underdispersive, a common situation for ensembles generated
solely by perturbing the initial conditions.

The CRPS, which provides a measure of the accuracy of
the full ensemble, penalizes both for errors in the mean and
for overly wide spread. Our comparison of the CRPS scores
found that ensemble forecasts for no-CL events are worse
than those for cases with a critical level. But in contrast to the
situation with the potential predictability estimated from en-
semble spread, the best CRPS scores were for the low-CL
events. The average CRPS scores for high-CL events were
worse than those for low-CL events, but still better than for
the no-CL cases.

We tested criteria for issuing a windstorm warning based
on the number of ensemble members showing bias-corrected
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winds greater than 20 m s~ '. The best performance was ob-
tained by setting a threshold in which just 4 of 20 ensemble
members were required to trigger a warning. Dividing the
roughly 2.5-yr period of the NCAR mesoscale ensemble ar-
chive into 6-h verification windows, our dataset included
roughly 2000 windstorm forecasting challenges distributed
across the 15 observations sites. The probability of detection
(POD), false-alarm ratio (FAR), and critical success (CSI) in-
dices for these hindcasts were all worse for the no-CL than
for the CL cases. In particular, the average CSI for the
roughly 1500 no-CL cases was 0.34, whereas it was 0.44 for
the approximately 500 CL cases. For comparison, the CSI for
1-yr averages of all NWS high-wind warnings throughout the
United States from 2008 to 2019 ranged from 0.34 to 0.41.

One interesting avenue for further study would be to test
whether our results are too pessimistic for applications involv-
ing red-flag warnings in wildfire meteorology. Our best and
third best results were obtained for the only two stations that
are located on lee slopes rather than flat terrain at the base of
the topography. It is possible that downslope winds may be
easier to forecast at locations farther up the lee slope than at
the foot of the mountain—particularly if the goal is to predict
whether high winds will occur at any unspecified location
along that slope.

The factors that determine whether downslope winds pene-
trate to the base of the lee slope involve difficult to simulate
boundary layer dynamics. The need to remove preexisting
cold-air pools is one factor. Mayr and Armi (2008) note that
for deep Alpine south foehn, the virtual potential temperature
of the air crossing the ridge needs to exceed that preexisting in
the Inn Valley. An accurate representation of momentum loss
in the boundary layer is also important. Higher values of drag
and surface roughness reduce not only the surface wind max-
ima, but also the distance the high wind region extends down
the lee slope (Richard et al. 1989; Miller and Durran 1991;
Cao and Fovell 2018).

An example where sustained downslope winds do not pene-
trate all the way down the lee slope to the valley floor in the
vicinity of Geyserville and Healdsburg, California, is shown in
Fig. 14a. On 27 October 2019, when the Kincade fire was
spreading in the area, the time series of wind observations at
Healdsburg Hills (Fig. 14b), located at the blue dot in
Fig. 14a, show north-northeast sustained winds maximizing at
30 m s~ ! and gusts exceeding 40 m s~ '. In contrast, the winds
nearby at Red Fan (Fig. 14c), close to the base of the ridge at
the red dot in Fig. 14a, are much weaker, with sustained winds
maximizing at 8§ m s~ and gusts to 15 m s~ '. There is no cold
pool isolating the valley station from stronger winds aloft; at
1200 UTC both Red Fan and Healdsburg Hills lie on the
same 289-K dry adiabat. This must, therefore, be a case where
the windstorm dynamics (including surface friction) do not
bring strong winds all the way down the lee slope.

Finally, we note that the two southern California stations
located up on the lee slopes, for which forecasts performed
quite well, SILSD (CSI 0.70) and HP016 (CSI 0.49), contrib-
uted significantly to the overall superiority of the critical-
level-event forecasts. It is possible, therefore, that some of the
improved predictability we found for cases occurring below a
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FIG. 14. Kincade fire winds from 27 Oct 2019. (a) Sustained winds at 1300 UTC [full barbs = 10 kt (1 kt =~ 0.51 m s~ 1)],
terrain contours every 250 m. Time series of sustained winds (red), gusts (green), and direction (blue) at (b) Healdsburg

Hills (blue dot) and (c) Red Fan (red dot).

mean-state critical level, relative to cases with no critical level,
actually arose from our particular choice for the station loca-
tions, with all no-CL stations down at the base of the mountain.
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