
Chapter 7
Time Series Analysis

7.1 Introduction

In this chapter we will consider some common aspects of time series analysis including autocorrelation,
statistical prediction, harmonic analysis, power spectrum analysis, and cross-spectrum analysis. We will also
consider space-time cross spectral analysis, a combination of time-Fourier and space-Fourier analysis, which
is often used in meteorology. The techniques of time series analysis described here are frequently encountered
in all of geoscience and in many other fields. We will spend most of our time on classical Fourier spectral
analysis, but will mention briefly other approaches such as Maximum Entropy (MEM), Singular Spectrum
Analysis (SSA) and the Multi-Taper Method (MTM). Although we include a discussion of the historical
Lag-correlation spectral analysis method, we will focus primarily on the Fast Fourier Transform (FFT)
approach.

7.2 Autocorrelation and Red Noise

7.2.1 The Autocorrelation Function

Given a continuous function x(t), defined in the interval t1 < t < t2, the autocovariance function is

Φ(τ) =
1

t2 − t1 − τ

t2−τ∫
t1

x ′(t)x ′(t+ τ)dt (7.1)

where primes indicate deviations from the mean value, and we have assumed that τ > 0. In the discrete case
where x is defined at N points spaced at an interval of ∆t , k = 1, 2, ..,N, we can calculate the autocovariance
at lag L.

Φ(L) =
1

N− 2L

N−L∑
k=L

x ′kx
′
k+L = x ′(t)x ′(t+ L∆t) (7.2)

The autocovariance is the covariance of a variable with itself (Greek autos = self) at some other time,
measured by a time lag (or lead) τ. Note that Φ(0) = x ′2 , so that the autocovariance at lag zero is just the
variance of the variable.

The Autocorrelation function is the normalized autocovariance function r(τ) = Φ(τ)/Φ(0) and −1 <
r(τ) < 1. If x is not periodic then r(τ) → 0, as τ → ∞ It is normally assumed that data sets subjected to
time series analysis are stationary . The term stationary time series normally implies that the true mean
of the variable and its higher-order statistical moments are independent of the particular time in question
and so do not vary within the sample. Therefore it is usually necessary to remove any trends in the time
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102 7 Time Series Analysis

series before analysis. This also implies that the autocorrelation function can be assumed to be symmetric,
r(τ) = r(−τ).

7.2.2 White Noise

In the special case r(∆t) = a = 0, our time series is a series of random numbers, uncorrelated in time so
that r(τ) = δ(0) a delta function. For such a “white noise” time series, the present value is of no help in
projecting into the future. The probability density function of white noise can vary, but we will generally use
Gaussian Normal white noise whose probability distribution is Gaussian around a mean value of zero. Figure
7.1 shows a sample of Gaussian and uniformly distributed white noise, along with their corresponding sample
probability density functions. Gaussian noise is both more likely to be near zero and to depart far from zero
than uniformly distributed noise. A Gaussian distribution fits many naturally occurring time series. In both
cases the autocorrelation is zero for any nonzero lag.

Figure 7.1 Samples of Gaussian and Uniform White Noise and their sample probability distributions. Both samples have
a standard deviation of 1.0. The probability distributions are based on a sample of 50,000 time steps.

7.2.3 Red Noise

We define a “red noise” time series as being of the form:

x(t) = ax(t− ∆t) +
(
1− a2)1/2

ϵ(t) (7.3)

where x is a standardized variable x = 0 and x ′2 = 1. The constant a is on the interval between zero and
one (0 < a < 1) and measures the degree to which memory of previous states is retained. The function ϵ
represents a series of random numbers drawn from a standardized normal distribution, and ∆t is the time
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interval between data points. This is also called a Markov Process or an Auto-Regressive, or AR-1 Process,
since it remembers only the previous value.

Multiply 7.3 by x(t − ∆t) and average over time to show that a is the one-lag autocorrelation, or the
autocorrelation at one time step ∆t.

x(t)x(t− ∆t) = ax(t− ∆t)x(t− ∆t) +
(
1− a2)1/2

ϵ(t)x(t− ∆t) (7.4)

Since the time series has unit variance, and the noise is uncorrelated with the time series, 7.4 becomes,

r(∆t) = a (7.5)

so that a is the autocorrelation at one time step.
Using 7.4 multiple times we can show how the autocorrelation depends on the time interval.

x(t+ ∆t) = ax(t) +
(
1− a2)1/2

ϵ(t)

x(t+ ∆t) = a(ax(t− ∆t) +
(
1− a2)1/2

ϵ(t)) +
(
1− a2)1/2

ϵ(t)

x(t+ ∆t)x(t− ∆t) = a2x(t− ∆t)x(t− ∆t) + 0
r(2∆t) = a2

(7.6)

From 7.6 we determine by induction that,

r(n∆t) = an (7.7)

So for a red noise time series, the autocorrelation at a lag of n time steps is equal to the autocorrelation
at one lag, raised to the power n. A function that has this property is the exponential function, enx =

(
ex
)n

, so we may hypothesize that the autocorrelation function for red noise has an exponential shape.

r(n∆t) = exp
(
−n∆t/T

)
(7.8)

where T = −∆t/ lna is the e-folding time of the autocorrelation, and if τ = n∆t, then

r(τ) = exp
(
−|τ|/T

)
(7.9)

The autocorrelation function 7.9 is shown in Fig. 7.2.
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Figure 7.2 Autocorrelation function for red noise 7.9 plotted as a function of lag time τ divided by e=folding time T .

In summary, if we are given an auto-regressive (AR-1) process 7.3, then its autocorrelation is given by
7.9, where the e-folding time is T = −∆t/ lna.
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7.3 Statistical Prediction and Red Noise

Consider a prediction equation of the form

x̂(t+ ∆t) = a1x(t) + a2x(t− ∆t) (7.10)

where a1 and a2 are chosen to minimize the root-mean-square error on dependent data. Recall from our
discussion of multiple regression that for two predictors x1 and x2 used to predict y, the second predictor is
only useful if, ∣∣r(x2,y)

∣∣ ⩾ ∣∣r(x1,y)r(x1, x2)
∣∣ (7.11)

In the case where the equality holds, r(x2,y) is equal to the “minimum useful correlation” discussed in
4.3.3 and will not improve the forecasting skill beyond the level possible by using x1 alone. In the case of
trying to predict future values from prior times, r(x2,y) = r(2∆t), and r(x1,y) = r(x1, x2) = r(∆t) so that
we must have, ∣∣r(2∆t)∣∣ ⩾ r(∆t)2 (7.12)

in order to justify using a second predictor at two time steps in the past. Note that for red noise

r(2∆t) = r(∆t)2 (7.13)

so that the value at two lags previous to now always contributes exactly the minimum useful, and nearly
automatic, correlation, and not more. For red noise, then, nothing is gained by using a second predictor. All
we can use productively is the present value and the autocorrelation function. Using one predictor one time
step before is called the persistence forecast, where we assume tomorrow will be like today.

7.4 Degrees of Freedom with Gaussian Red Noise

For a red noise process, adjacent values are correlated and so not independent. One cannot gain more
information about a red noise process by sampling it at finer and finer temporal resolution. Information, or
degrees of freedom, increase as a function of sample length. Leith (1973) used a Gaussian red noise model
to assess the number of degrees of freedom for assessing the uncertainty of sample means. He proposed that
the number of independent samples N∗ contained in a time series of N time steps separated by ∆t with an
e-folding time of T = −∆t/ ln(r∆t) is given by,

N∗ =
N∆t

2T =
Total time series length

Two times the autocorrelation e-folding time (7.14)

In other words, the number of degrees of freedom is the total length of the time sample divided by twice the
e-folding time of the autocorrelation. Separation of two e-folding times between independent measurements
is required since the intervening points can be mostly predicted by two points separated by a smaller time
interval than 2T . Leith’s formula can also be written as,

N∗

N
=

1
2 ln(r(∆t)) (7.15)

Leith’s formula is consistent with Taylor (1921), who said that

N∗

N
=

1
2L (7.16)

where L is given by
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L =

∞∫
0

r(τ ′)dτ ′ (7.17)

If we substitute the formula for the autocorrelation of red noise 7.8 into 7.17, and take into account that
Taylor was using non-dimensional time t ′ = t/∆t, then we can show that L = T , and Leith’s formula is the
same as Taylor’s.

The factor of two comes into the bottom of the above expressions for N* so that the intervening point is
not easily predictable from the ones immediately before and after. If you divide the time series into units of
e-folding time of the auto-correlation, T, One can show that, for a red noise process, the value at a midpoint,
which is separated from its two adjacent points by the time period T, can be predicted from the two adjoining
values with combined correlation coefficient of about 2e−1, or about 0.52, so about 25% of the variance can
be explained at that point, and at all other intervening points more can be explained.

Bretherton et al. (1999) provide a nice review of efforts to assess spatial and temporal degrees of freedom.
They use an approach in which the spatial or temporal statistics are fitted to a Chi-Squared distirbution.
An alternative formula for effective degrees of freedom to be used in assessing the statistical significance of
temporal means is given as,

N∗

N
=

(1− r1(∆t))
(1+ r1(∆t))

(7.18)

If one is looking at a first order process, such as the calculation of a mean value, or the computation of a
trend where the exact value of the time is know, then the formula 7.18 should be used.
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Figure 7.3 Ratio of degrees of freedom N∗ to sample size N as a function of autocorrelation at one time step r(∆t) for
use in assessing the statistical significance of means(linear) and correlations (quadratic).

For quadratic statistics, such as variance and covariance analysis between two variables x1 and x2, a good
approximation to use is:

N∗

N
=

(1− r1(∆t)r2(∆t)
(1+ r1(∆t)r2(∆t)

(7.19)

where, of course, if we are covarying a variable with itself, then r1(∆t)r2(∆t) = r(∆t)2 . This formulation
goes back as far as Bartlett (1935). Of course, if the time or space series is not Gaussian red noise, then the
formula is not accurate. But it is still good practice to use it, and many geophysical time series contain a
good measure of red noise.

Figure 7.3 shows N ∗ /N as a function of r(∆t) for the formulas introduced in section 7.4. Because in
quadratic statistics such as covariance, the noise is multiplied by itself, the reduction of degrees of freedom
with increasing autocorrelation is slower than for linear statistics such as the mean value.
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7.5 Harmonic Analysis and the Fourier Transform

Harmonic analysis is the interpretation of a time or space series as a summation of contributions from
harmonic functions, each with a characteristic time or space scale. Consider that a variable y(t) is defined
on the interval 0 < t < T . Then we can write any time series y(t) as

y(t) =

∞∑
k=0

[
Ak cos

(
2πk t

T

)
+ Bk sin

(
2πk t

T

)]
(7.20)

where T is here the length of the period of record and k is a positive integer. y(t) is a continuous function
of t. The coefficients of this expansion in sines and cosines can be obtained by multiplying by a test function
on the left, say cos

(
2πn t

T

)
, where n is any positive integer.

Because the sines and cosines are orthogonal to each other on the interval 0 < t < T , after we integrate
over time we obtain simple algebraic equations for the coefficients.

A0 = y Ak =
2
T

T∫
0

y(t) cos
(
2πk t

T

)
dt Bk =

2
T

T∫
0

y(t) sin
(
2πk t

T

)
dt k > 0 (7.21)

A time series of real data is usually presented at discrete values of time separated by a time step ∆t. In
that case the integrals presented in 7.21 are approximated with a summation over the time series consisting
of a sample of N equally-spaced values.

A0 = y Ak =
2
N

N∑
i=1

y(ti) cos
(
2πki∆t

T

)
Bk =

2
N

N∑
i=1

y(ti) sin
(
2πki∆t

T

)
k > 0 (7.22)

Here T = N∆t. Where the data are not equally spaced, Ak and Bk can be estimated by regression. In the case
of equally spaced data, one can estimate N coefficients from N data points, but the k = N/2 is the maximum
wavenumber that can be computed. Ak=0 = y is the mean of the time series and Bk=0 = Bk=N/2 = 0. The
highest wavenumber that can be computed, k=N/2, is for a wavelength of 2∆t for which the amplitude, but
not the phase can be computed. The highest resolvable frequency 1/2∆t, is half the sampling frequency and
is called the ”Nyquist” frequency after Harry Nyquist, a Swedish born American electronic engineer. The
highest frequency resolved thus depends on the sampling interval. The lowest frequency resolved is 1/T , and
is thus determined by the total length of the sample. The separation between frequencies is also 1/T , which
can be called the ”bandwidth” of the analysis. The frequencies resolved by a sample of N values separated
by ∆t are thus,

fi =
i

T
; i = 0, 1, 2, ...N/2 (7.23)

Since the sines and cosines are orthogonal on the interval 0 < t < T , the time series can be reconstructed
exactly from the Fourier coefficients.

y(ti) = y+

N/2∑
k=1

Ak cos
(
2πki∆t

T

)
+ Bk sin

(
2πki∆t

T

)
(7.24)

This can be rearranged slightly to be,

y(t) = y+

N/2∑
k=1

Ck cos
(2πk
T

(t− tk)
)

(7.25)

where,

C2
k = A2

k + B2
k and tk =

T

2πk arctan
(Bk

Ak

)
(7.26)
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In 7.26 the time series is represented by a summation of cosine waves, each with an amplitude Ck and a
phase delay tk.

7.6 The Power Spectrum

In many cases of interest, it is useful to know how the variance of a time series is distributed across the
frequency domain. Having performed the Fourier analysis of a discrete time series and expressed it in terms
of a set of cosine waves with different frequencies, we can easily express the variance of y in the following
way.

y ′2 =
1
2

N/2∑
k=1

C2
k (7.27)

So the power as a function of frequency fk can be written as,

Φ(fk) =
1
2C

2
k where fk =

k

T
(7.28)

From 7.27 and 7.28 we infer that if we plot the power spectrum as a function of frequency, then the area
under the curve will be proportional to the variance, a useful thing. If the frequency range is very large, one
can plot fkΦ(fk) versus log fk and preserve the area - variance relationship. If the power range and frequency
range are both very large, one can plot the log of power versus the log of frequency, but in that case the
area under the curve is no longer proportional to variance, and one must be careful when interpreting the
contribution of different frequencies to the total variance. Since the power spectrum is based on N data
points, and the resulting power spectrum has only N/2 values, each realization of a power spectrum has
about two degrees of freedom. We don’t need to worry about autocorrelation, since spectral analysis takes
this into account explicitly.

7.7 Methods of Computing Power Spectra

7.7.1 Direct Fourier Transform

The power spectrum can be obtained by direct Fourier transform, as described in section 7.5. This is feasible
for large data sets because of the Fast Fourier Transform (FFT), which greatly speeds up the computation
of Fourier transforms if the length of the record is a power of two, N = 2m, where m is any integer. Mixed
radix FFTs are also available for N = 2m3n5p. As previously mentioned, however, each spectral estimate
has only about 2 degrees of freedom. To give the estimate of the power spectrum more statistical robustness,
one can average adjacent frequencies together, or divide the record up into shorter segments, and average the
spectral estimates from these shorter segments into an average spectrum with more degrees of freedom. In
either case, one is forced to consider a trade off between spectral resolution, which depends on the length of
the chunk of data given to the spectral analysis, and the number of degrees of freedom in the final spectrum.
If L spectral estimates result from the analysis, and N total data are used to make that estimate, then the
number of degrees of freedom is slightly more than N/L. Generally, the more degrees of freedom in the final
spectral estimate, the better the quality of the analysis. One should also insist on adequate quality.

7.7.2 Lag Correlation Method

Norbert Wiener showed that the autocovariance and the power spectrum are Fourier transforms of each other.
So we can obtain the power spectrum by performing harmonic analysis on the autocovariance function. This
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was the method preferred before fast computers, because the number of computations required is much
less than a direct Fourier transform. The number of lags can be chosen to achieve the desired frequency
resolution, and the number of degrees of freedom of the resulting power spectrum increases with the length
of the available record. Suppose we consider time lags, τ on the interval TL < τ < TL. The Fourier transform
pair of the continuous spectrum and the continuous lag correlation are then,

Φ(k) =

TL∫
−TL

r(τ)e−ikτdτ (7.29)

r(τ) =

k∗∫
−k∗

Φ(k)eikτdk (7.30)

The maximum lag, TL, which is L∆t in discrete mathematics, determines the bandwidth of the spectrum
and the number of degrees of freedom associated with each spectral estimate. The bandwidth is 1/2TL, and
frequencies resolved are k/(2Lδt, where k = 0, 1, 2, ...L. There are L spectral estimates produced, and if
N data are used to compute them, then each spectral estimate has about N/L degrees of freedom. So if
N = 1000 data points are used to compute spectral estimates at L = 50 frequencies, each estimate has 20
degrees of freedom.

The lag correlation method is rarely used nowadays, because Fast Fourier Transform algorithms are more
efficient and widespread. The lag correlation method is important for intellectual and historical reasons, and
because it comes up again in higher order spectral analysis.

7.8 The Complex Fourier Transform and Spectral Analysis

In previous sections we presented the Fourier Transform in real arithmetic using sine and cosine functions.
It is much more compact and efficient to write the Fourier Transform and its associated manipulations in
complex arithmetic. In a domain of continuous time and frequency, we can write the Fourier Transform Pair
as integrals:

f(t) =
1
2π

+∞∫
−∞

F(ω)eiωtdω (7.31)

F(ω) =

+∞∫
−∞

f(t)e−iωtdt (7.32)

Here f(t) is some real time series in the independent variable t, and F(ω) is the Fourier Transform of f(t),
and is generally a complex number with a real and imaginary part. ω� is the frequency in radians per unit
time. If the period of the oscillation is T , then the radian frequency is ω = 2π/T , and the frequency in cycles
per unit time is f = 1/T .

7.8.1 Parseval’s Theorem

The following theorem by Parseval is important in spectral analysis and filtering theory. It is derived by
considering two functions f1(t) and f2(t) with Fourier Transforms F1(ω) and F2(ω). We consider the following
manipulation.
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+∞∫
−∞

f1(t)f2(t)dt =

+∞∫
−∞

f1(t)

[
1
2π

+∞∫
−∞

F2(ω)eiωtdω

]
dt

=
1
2π

+∞∫
−∞

F2(ω)

+∞∫
−∞

f1(t)e
iωtdtdω

=
1
2π

+∞∫
−∞

F2(ω)F1(−ω)dω

=
1
2π

+∞∫
−∞

F1(ω)F∗2(ω)dω

(7.33)

Here the asterisk indicates a complex conjugate. Since the original time series are real, we must have that
F(−ω) = F∗(ω). In the special case where f1(t) = f2(t) = f(t) we obtain,

+∞∫
−∞

f(t)2dt =
1
2π

+∞∫
−∞
∣∣∣F(ω)

∣∣∣2dω (7.34)

Thus the square of the time series integrated over time is equal to the square (inner product) of the Fourier
transform integrated over frequency. This shows that the integrated variance in time is equal to the power
spectrum integrated over frequency.

7.8.2 The Time Shifting Theorem

The time shifting theorem indicates that introducing a time shift in complex Fourier space is a simple
multiplication by a complex number. To see this consider the Fourier transform of a time series shifted by a
time increment τ.

f(t± τ) = 1
2π

+∞∫
−∞

F(ω)eiω(t±τ)dω =
1
2π

+∞∫
−∞

F(ω)e±iωτeiωtdω (7.35)

From 7.35 we see that the Fourier transform of f(t ± τ) is the Fourier transform of f(t) multiplied by the
factor e±iωτ.

7.8.3 Lagged Covariance and the Power Spectrum

The continuous form of the definition of the lag covariance function for a time series f(t)is,

r(τ) =

+∞∫
−∞

f(t)f(t+ τ)dt (7.36)

We can use Parseval’s theorem and the time shifting theorem to write,
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r(τ) =

+∞∫
−∞

f(t)f(t+ τ)dt =
1
2π

+∞∫
−∞

F(ω)F∗(ω)eiωτdω

=
1
2π

+∞∫
−∞

Φ(ω)eiωτdω

(7.37)

where Φ(ω) is the power spectrum. The power spectrum is thus the Fourier Transform of the autocovariance
function, so that they form a Fourier transform pair.

r(τ) =
1
2π

+∞∫
−∞

Φ(ω)eiωτdω

Φ(ω) =

+∞∫
−∞

r(τ)e−iωτdτ

(7.38)

This methodology can also be applied to the covariance between two different time series f1(t) and f1(t). A
similar relationship occurs between the covariance between two time series and the cross power Φ12(ω). The
cross power has a real part, or cospectrum, and an imaginary part, or quadrature spectrum, which together
specify the phase between the two time series.

r12(τ) =
1
2π

+∞∫
−∞

Φ12(ω)eiωτdω

Φ12(ω) =

+∞∫
−∞

r12(τ)e
−iωτdτ

(7.39)

7.8.4 Example: The Power Spectrum of Red Noise

The autocorrelation function for red noise is,

r(τ) = e−τ/T (7.40)

where T is the e-folding time of the autocorrelation, i.e. autocorrelation time. Using 7.38 and inserting 7.40
we obtain,

Φ(ω) =

+∞∫
−∞

e−τ/Te−iωτdτ =
2T

1+ω2T2 (7.41)

Figure 7.4 shows that the power spectrum of red noise peaks strongly at low frequencies as the autocorrelation
time, T , increases. Note that the range of frequency in this theory is infinite, so as T → 0 Φ(ω) → 0, but
takes on a uniform value for 0 < ω < ∞. The total variance is unchanged. In Figure 7.4 we show only the
range 0 < ω < π, which would be the Nyquist range for ∆t = 1 using discrete data. Later we will consider
how this theoretical spectrum for red noise is modified for a finite sample of discrete data.
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Figure 7.4 Power spectrum as a function of frequency in radians for the theoretical spectrum in 7.41 for autocorrelation
e-folding times of 0.5, 1, 2, 3, and 4 time units.

7.9 Data Windows and Window Carpentry

In the analytic case we presume an infinite domain so that the true spectrum can be calculated exactly,
provided the analytic function satisfies certain conditions.

F(ω) =

+∞∫
−∞

f(t)e−iωtdt (7.42)

In real cases, however, where we cannot observe f(t) on the interval −∞ < t <∞, we are looking at the
function through a “window.” The window can be represented by a function w(t). The window function for
the ideal analytic case where we know the function for all time is w(t) = 1 on the interval −∞ < t <∞, but
in the more realistic case where we know the function only on some finite interval, say −T/2 < t < T/2, then
w(t) = 1 on that interval and w(t) = 0 everywhere else. In the case of a finite window, we do not see the
true time series f(t), but that time series multiplied by a window function f(t)w(t). In order to understand
the effect on the Fourier transform of multiplying the time series by a window function, we can use a form
of the convolution theorem that states that the Fourier transform of the product of two functions is the
convolution of their individual Fourier transforms 7.43.

+∞∫
−∞

f(t)w(t)e−iωtdt =
1
2π

+∞∫
−∞

F(ω)W(ω−ω)dω (7.43)

It is useful then to know the Fourier transform of the window function to see how it modifies the true Fourier
transform, which is related closely to the power spectrum by 7.34. Consider the following Boxcar function
window.

w(t) =

{
1/T for T/2 < t < T/2
0 otherwise (7.44)

The Fourier transform of the boxcar function 7.44 is easily obtained.

W(ω) =

+∞∫
−∞

w(t)e−iωtdt =
1
T

T/2∫
−T/2

e−iωtdt

=
1
iωT

[
eiωT/2 − e−iωT/2

]
=
sin
(

ωT
2

)
ωT

2
= sinc

(ωT
2

) (7.45)
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The Fourier transform of the boxcar function is a sinc function, sinc(x) = sin(x)/x, which has the unfor-
tunate characteristics of relatively large negative side lobes that decay slowly, so that it spreads variance
around in frequency space in a spurious way. Figure 7.5 shows this behavior. The first zero crossing of the
response function W(ω) occurs at ω = 2π/T , which for a discrete Fourier analysis is the lowest frequency
resolved and also the separation between resolved frequencies (i.e. the bandwidth). The first negative side
lobe always has an amplitude of about -0.22, so a spurious signal of about 22% appears a bandwidth or so
away from the actual frequency.

-3 -2 -1 0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

1

W
(

)

T=4
T=10
T=50

Figure 7.5 Fourier transform of the rectangular window function for various values of the length of record T in time units.
The plot is terminated at ω = ±π, which would be the Nyquist interval in radian frequency if the time step was one time
unit.

A finite window acts as a smoothing on the true spectrum. In addition to the smoothing effect, the
side lobes of the frequency window lead to spectral leakage to other frequencies. The degree of smoothing
and the range of the spread in frequency depend on the length of the data window T. The shorter that
T is, the stronger the smoothing/spread will be. Therefore we can see that we must carefully design the
window through which we view the data prior to spectral analysis, if we want to obtain the best results.
The response function for the rectangular window is shown below. Note that while the response does peak
strongly at the central frequency, significant negative side lobes are present. This means that our spectral
analysis will introduce spurious oscillations at higher and lower frequencies that are out of phase with the
actual oscillation.

To improve the quality of the resulting spectral analysis, it is desirable to modify the data window from
the naive rectangular window. The ideal window response function, W(ω), would have a narrow central
lobe and insignificant side lobes. We can improve on the naive rectangular window function and the rather
unsatisfactory sinc function window response through modifications of the window function w(t). Since much
of the poor behavior of the rectangular window comes from the Gibbs effect of its sharp edges, rounding the
edges of the window is an intuitive approach. Many data windows have been proposed for different purposes,
most of which taper the window to near zero at the ends and maximize in the middle of the data window
Harris (1978). In addition to the rectangular window already discussed, we will introduce just two that are
suitable for general use; the Hann or Hanning window, and the Hamming window.

7.9.1 The Hanning Window

The Hanning window is named after Julius von Hann and is also called the elevated cosine or cosine bell
window.

w(t) =
1
2

(
1− cos

(2πt
T

))
T/2 < t < T/2 (7.46)
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We can see that the first part of the response function for the cosine bell window is a sinc function exactly
like that of the rectangular window. In addition, however, we have two additional sinc functions of reduced
amplitude that maximize in the center of the negative lobes on either side of the central lobe. The effect
of these is to nearly cancel the negative side lobes of the rectangular response function while significantly
broadening the central lobe (Fig. 7.6). We like the fact that the side lobes are now smaller, but the broadened
central lobe means that the spectrum will be slightly smoothed compared to a rectangular window. This
smoothing is not a disaster in most applications, since we often end up doing some smoothing anyway, and
the smoothing effect of the cosine bell window allows us to claim a small increase in the number of degrees of
freedom per spectral estimate. If greater frequency resolution is required, then a longer chunk of data must
be used (i.e. increase T)

7.9.2 The Hamming Window

If a slightly better cancellation of the side lobes is desired, then the Hamming window (Richard W. Hamming)
can be used. In addition to slightly better cancelling of the side lobes, a narrower central lobe is achieved
compared to the Hanning window. Figure 7.6 shows the Fourier transforms of the Rectangular, Hanning
and Hamming windows for a window length of T = 100. The side lobes are greatly reduced by tapering the
window. The differences between the Hanning and Hamming windows are modest.

w(t) =
1
2 − 0.426cos

(2πt
T

)
T/2 < t < T/2 (7.48)
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)
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)
+ sinc

(ωT
2 − π
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(7.49)
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Figure 7.6 Response functions W(ω) for the rectangular, Hanning and Hamming windows for a window length of T = 100.

7.9.3 Welches Overlapping Segment Analysis: WOSA

The most common methods of spectral analysis used employ the Fast Fourier Transform method. In this
method a direct Fourier Transform is made of the data using an efficient algorithm that makes use of the
fact that the length of the time series has been chosen to be an integer power of two M = 2n. Mixed-
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radix FFT’s are also available for which M = 2n3m5j. In applying these methods the total time series of
length N∆t can be broken up into a series of smaller chunks of length M. Since a tapered window like
the Hanning window will normally be applied, it is better to overlap the segments so that the data near
the break points are not ”wasted” by receiving a small weight. Overlapping the data by 50% will ensure
that all the data are counted equally in the average spectrum that will be accumulated by averaging the
results from each individual segment. This averaged spectrum will have approximately 2N/M degrees of
freedom, since each power spectrum will have only M/2 estimates. The number of degrees of freedom will
actually be slightly larger than this, depending on how much smoothing the data window provides, making
the number of independent spectral estimates for each realization of the spectrum smaller than M/2. The
spectra and cross-spectra for these smaller chunks can be averaged into a grand spectrum that has some
degree of statistical reliability if N >> M. This is called Welch’s Overlapping Segment Analysis, or WOSA.
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Figure 7.7 Illustration of WOSA analysis in which Hamming windows of length M = 64 are overlapped by 50% on a data
set of length N = 256.

Figure 7.7 illustrates how a set of Hamming windows of length M = 64 overlapped by 50% can be used
to analyze a data set of length N = 256 . All the data are equally weighted in the composite spectrum
that results, except for the data on either end of the data set that are under weighted. Since the resulting
spectrum will contain only M/2 spectral estimates, and N data are used, the number of degrees of freedom
per spectral estimate is approximately 2N/M, times some factor to take into account that the spectrum is
smoothed by the window. In the case of the Hamming window this factor is about 1.2.

Figure 7.8 shows example results for computing a spectrum using WOSA analysis and three different
windows, the rectangular window, the Hanning taper and the Hamming taper. The input time series is a
cosine wave with a period of 4.2 time units. The total record is of length N = 2048, a chunk length ofM = 64
was used with an overlap of 50% = 32 time units. The power scale is logarithmic to show the sensitivity
where the estimated power is very small. As expected from 7.6 one can see that the tapered windows greatly
reduce the amplitude away from the line center at ω = 2|pi/2.4, especiallly for the first side lobe, but they
also widen, smooth out, the central peak to be twice qs wide as for the rectangular window. The Hamming
window does a more effective job than Hanning of removing the first side lobes, which are the biggest, but
do allow more variance to pass far away from the line center. These amplitudes are weaker by a factor of
10−4 from the peak power and would not be a concern in typical geophysical settings with lots of noise.

7.10 Designing a Power Spectral Analysis

When considering spectral analysis of a time or space series, one typically has a hypothesis that a peak in
the spectra my occur in a particular frequency range, which would indicate a larger than expected amount
of variance with the corresponding period. It is essential to establish an a priori argument for where that
spectral peak should be. Once this is known the nature of the required data set and an effective approach
to spectral analysis can be designed.
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Figure 7.8 Power spectrum of a cosine wave with a period of 4.2 time units estimated with WOSA analysis in which
Hamming windows of length M = 64 are overlapped by 50% on a data set of length N = 2048. The results with a
rectangular window, a Hanning taper and a Hamming taper are shown.

7.10.1 Bandwith and Chunk Length

The first thing that to consider is how much resolution of frequency is required to isolate the peak of interest.
Is it a very sharp peak, at a particular frequency, or is it expected to be a broad peak? If another peak is
expected to be nearby, how much bandwidth do you need to separate the peak you seek from others you
know to be around. The frequency separation between a period of P and a period of P’ is ∆f = 1/P ′ − 1/P.
Supposing that you want at least a couple frequencies in between to show the separation between these peaks,
and you are using a finite window that will smooth the spectrum a bit, you probably want a bandwith of
at most one fourth of the frequency separation between the periods of interest. The bandwith of a spectral
analysis is ∆f = 1/Mδt, so you want a chunk length of at least four times the longer of the two periods P
and P’.

7.10.2 Time Step

Suppose we know that we expect a peak in the variance at a period of P time units, or a frequency of
f = 1/P cycles per unit time. A time step of ∆t = P/4 will put that spectral peak right in the center of the
Nyquist interval 0 < f < 1/2δt = 2/P. So half the resolved frequencies will be higher than the frequency
of interest and half will be lower. There is little point in having a smaller time step than this, since it just
adds more high frequencies and does not help at all with the frequency of interest. Being in the middle of
the Nyquist interval is more than enough to reduce any problems with aliasing from frequencies higher than
those resolvable by the time step chosen.

7.10.3 Robustness and Degrees of Freedom

In designing a spectral analysis procedure, one must take into account the tradeoff between spectral resolution
and degrees of freedom, if the length of the available time series is limited. We stated before that the number of
degrees of freedom in a spectral estimate is approximately the number of data points divided by the number of
independent spectral estimates. The number of degrees of freedom required depends on the relative strength
of the peak we are looking for. We will come back to this in the section on testing the statistical significance
of spectral peaks, but for now let’s assume a general rule that we don’t take a spectrum seriously unless we
have about 20 degrees of freedom, so this means we need a data set that is 10 times the length of the chunk,
N = 10xM. With that let’s consider an example to fix ideas.
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7.10.4 Example of 5-Day Wave

Suppose we have an a priori expectation that a peak in variance will occur at 5 days. What is the time step
∆t and chunk length M that will resolve this well, and how much data do we need to get a robust result?
Our frequency of interest is f = 0.2 cycles per day (cpd), and a time step of one day will give a Nyquist
frequency of fNyquist = 0.5 cpd. Since it should be easy to get daily data, let’s choose that as our sampling
interval.

Next we need to decide what bandwith to use. Suppose for the sake of argument that we want to be able
to distinguish a 5-day wave from a six day wave. So, ∆f = 1/5 − 1/6 = 1/30. If we want three frequencies
in between, then we need a bandwidth of about ∆f == 1/30x4 = 1/120. Since we’ll be using an FFT and
WOSA analysis, let’s choose a chunk length of M = 128, which is the nearest power of 2 greater than 120.
To get about 20 degrees of freedom, we’ll need 1280 days of data, or about 3.5 years.
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Figure 7.9 Power spectrum of a data set consisting of a 5-day and 6-day harmonic, using a Hamming taper with chunk
length of M =128, 64 and 32. In this plot the total variance is the area under the curve, which is the same in each case.

Figure 7.9 shows the spectra computed from an input time series consisting of cosine waves of 5 and 6
days using our design chunk length of M =128, as well as shorter chunks of 64 and 32. As we expected,
the 128-day chunk length allows the 5 and 6-day waves to be separated, with zero variance showing at 2
intervening frequencies. The separation is still observable with a chunk length of 64, but at a chunk length
of 32 the two peaks merge into one broad peak.

7.11 Statistical Significance of Spectral Peaks

The statistical significance of a peak in a power spectrum is assessed as in any case by stating the significance
level desired, and then stating the null hypothesis and its alternative. The null hypothesis is usually that
the time series is not periodic in the region of interest, but simply noise. Since most geophysical time series
contain a good measure of noise, we can usefully compare the amplitude of a spectral peak to a background
value determined by a red noise fit to the spectrum. We illustrate here one simple method of determining if
a spectral peak is statistically significant.

One way to test significance of a spectral peak is to compute the ratio of the observed power, Φ to the
power expected from your null hypothesis Φ0 and compare this value with a “Chi-Squared” test with the
corresponding number of degrees of freedom,

χ2 = (n− 1) s
2

σ2 ν = (n− 1) (7.50)
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where the Number of degrees of freedom ν is one less than the number of independent samples, n. The
number of independent samples is estimated from,

n =
2N
M

fw (7.51)

where,

N = total sample size
M = chunk length of FFT
fw = a factor to account for the smoothing by the window

(7.52)

The factor of two arises because the spectrum has only M/2 estimates, since the phase information is not
included in the power spectrum. The factor fw is generally between 1 and 1.5, depending on how much
smoothing of the spectrum that the particular window does. For the Hanning window, fw = 1.2, To be on
the conservative side, we can assume fw = 1.0, but in marginal cases this factor can be used to get a more
accurate significance estimate.

A more convenient way to apply this test is to use the F-test, based on the F distribution.
Theorem: If σ2

1 and σ2
2 are the variances of independent random samples of size n1, and n2, respectively,

taken from two normal populations having the same variance, then

Fν2
ν1 =

σ2
2
σ2

1
=
Φ

Φ0
(7.53)

is a value of a random variable having the F distribution with the parameters ν1 = n1 − 1 and ν2 = n2 − 1,
giving the number of degrees of freedom for the upper and lower variance, respectively.

The F distribution can be used to determine whether two sample variances are different in a statistical
sense at a chosen probability level. Tables of the F distribution are included in ??. You should not confuse
this F with F(z), the cumulative distribution of the Normal distribution. In assigning a confidence level and
interpreting statistical tests of significance one must be concerned very much with the distinction between a
priori and a posteriori statistics.

a priori: If we have stated in advance that we expect a peak at a particular frequency (and given a good
reason beforehand), then we can simply test the significance of the spectral peak above the background using
the normal confidence limits set forth for the chi-squared or F statistics.

a posteriori: If we have not stated at which frequency we expect the peak, then we must determine the
probability that one frequency out of the M/2 we have computed should show a significant peak. The usual
way to do this would be to take the probability of a type II error (accepting a false hypothesis as true) and
multiply this by the number of chances we have given the spectrum to exceed the required level.

7.11.1 Example: a priori versus a posteriori Spectral Peaks

Suppose we have a spectral peak which exceeds the background significantly at the 95% probability level.
1. If we had predicted this frequency before computing the spectrum, then we can use the 95% probability

level and infer that only a 5% possibility exists that this spectral peak could have occurred by chance. We
have an a priori reason for expecting this peak and we can therefore use a priori statistics.

2. If we had not predicted the frequency of the peak, then we must test the probability that one frequency
out of our sample of M/2fw independent estimates should show a significant peak. M/2 is the number of
frequencies retained in our spectrum and fw is the factor indicating the degree of smoothing by the window.
If the number of independent frequencies in our spectrum is 50, then our chance of getting a spectrum with
no significant peaks is (0.95)50 = 0.08 and it is likely that at least one peak will exceed the 95% confidence
level by chance. If we had started with a 99% confidence limit the significance would be (0.99)50 = 0.6, and
there is still a 40% chance that one peak will exceed the 99% confidence level. Therefore, in practice we
need to have an a priori reason for expecting a peak at the frequency where one occurs, or our confidence
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level is very low. This a priori reason could be a theory, or the observation of a peak at the frequency of
interests in an independent data set. The probability of getting spectral peaks with 95% significance at the
same frequency by chance in two independent data sets is small.

7.11.2 Example: Statistical Design

Example: Suppose we wish to examine climatic fluctuations in the 10-1000 year range. Assume that a
physically meaningful peak should have twice the variance of the background spectrum. What should be the
spacing of the observations and how long a time series is required to get meaningful statistics?

A time step of two years would resolve the shortest period of interest very well, since the Nyquist period
would be 4 years and a period of 8 years would be in the middle of the Nyquist interval (0 < f < 1/(2∆t). The
next question would be how much bandwidth is required, which determines the chunk length, M. Suppose
for the sake of argument that we’d like to be able to distinguish a 500 year period from a 1000 year period. If
we choose a chunk length of 4096 years, then the fourth frequency resoloved would be 1/1024 cycles per year,
and the eighth frequency would be 1/512 cycles per year. This is fine because it leaves three frequencies lower
than the lowest frequency of interest, and it leaves three frequencies between the two frequencies of interest
1/1000 and 1/500 cycles per year. Since the time step is two years, we need a chunk length ofM = 2048. To
see how many degrees of freedom we need, we first need to decide what our significance level is. Let’s say
we want 99% significance if our spectral peak exceeds the background by a factor of two. We then ask how
many degrees of freedom are required so that an F-statistic of 2.0 is 99% significant. We need to know the
number of degrees of freedom for our null hypothesis spectrum. This is usually a two-parameter fit, so let
us assume we have at least 100 degrees of freedom for it. Then from the F-statistic table, we determine that
the sample spectrum must have at least 23 degrees of freedom. This means we need about 12 independent
realizations of our spectrum or about 12x2x2048 = 49,152 years of data. So if we find a spectral peak with
a variance ratio of 2 using a chunk length of 4096 years, then this peak will be significant at 99%, if we’ve
predicted the frequency of the peak a priori. Two-year averages or data taken every other year are fine for
this analysis. Using yearly data would just double the Nyquist frequency and add many high frequencies of
no interest to our spectrum.

7.11.3 The Red Noise Null Hypothesis

A useful null hypothesis for many geophysical time series is that the time series consists of autocorrelated
Gaussian noise. The degree of autocorrelation can be a very important physical characteristic and the reasons
why geophysical time series are autocorrelated are interesting, but here we focus on the exceptions where the
time series contains some periodic phenomena immersed in autocorrelated noise. The theoretical spectrum
for autocorrelated ”red” noise was presented in 7.2.3 , but here we consider how the red noise spectrum is
modified by being viewed at discrete times separated by ∆t. We begin with the equation for an autocorrelated
random walk 7.3.

x(t) = αx(t− ∆t) +
(
1− α2)1/2

ϵ(t) (7.54)

where α = r(∆t) Using the ”time shifting theorem” 7.35, we can write the Fourier transform of 7.54 as,

X(ω) = αX(ω)e−iω∆t +
(
1− α2)1/2

E(ω)

=
CE(ω)

1− αe−iω∆t

(7.55)

where X(ω) is the Fourier transform of x(t), E(ω) is the Fourier transform of Gaussian white noise, and
C =

(
1− α2)1/2. We know from Parseval’s Theorem that the power spectrum of x(t) is
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Φxx(ω) = X(ω)X∗(ω) =
C2E(ω)E∗(ω)(

1− αe−iω∆t

)(
1− αeiω∆t

)
=

1− α2

1− 2αcos(ω∆t) + α2 for 0 < ω < π

∆t

(7.56)

where we have used the identity cos(x) =
(
eix+e−ix

)
2 . The formula 7.56 for the power spectrum of red noise

was discussed by Gilman et al. (1963).
To fit the shape function 7.56 to a real spectrum we need the one-lag autocorrelation, α from the input

time series. A slightly more robust estimate of the parameter α from the original time series is the average
of the one-lag autocorrelation and the square root of the two-lag autocorrelation. It is presumed here that
the time step is chosen appropriately for the variability present in the time series. If the time step is too
small or too large for the characteristic variability in the time series, then the results will be poor. We then
multiply the shape 7.56 for that value of α by a factor that will make the variance equal to that of the time
series in question. One simple way to do this is to match the total variance. The total variance is the sum of
the power over all non-zero frequencies. So sum the power in the observed spectrum and the power in the
idealized red noise spectrum. Then multiply the idealized red noise spectrum by this ratio, so that the red
noise spectrum has the same total variance as the observed spectrum. The null-hypothesis spectrum is thus
a two-parameter fit that has the same total variance and same one-lag autocorrelation as the observed time
series.

7.11.4 Continuous and Discrete Red Noise Spectra

It may be helpful to compare the discrete red noise spectrum 7.56 with the continuous red noise spectrum in
section 7.8.4 . For the continuous spectrum 7.4 the integration is performed for 0 < ω <∞, whereas for the
discrete spectrum 7.56 the integration is performed for 0 < ω < π/∆t. The discrete spectrum has an integral
of π, so that if α = 0 the spectrum has a uniform value of 1. For the continuous spectrum, α = 0 gives a
vanishingly small value that stretches to infinity, although the total variance is conserved as α increases and
the variance peaks near ω = 0. To compare the shapes of the two formulas in the Nyquist interval, we can
integrate the continuous spectrum over the Nyquist interval to establish its norm, and use that to rescale
the continuous spectrum so that it has the same variance as the discrete spectrum on the Nyquist interval.

π/∆t∫
0

2T
(1+ω2T2)

dω = −2tan−1
( π

lnα

)
(7.57)
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Figure 7.10 Power spectra of red noise computed using the continuous 7.4 and discrete 7.56 formulations. Curves are
shown for α = 0.1, 0.3 0.5 and 0.7. The continuous spectrum is normalized for the Nyquist interval using 7.57.
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Comparison of the continuous and discrete approximations of the power spectrum of red noise are shown
in Figure 7.10. It can be seen that the discrete approximation smooths the spectrum a little, with lower
values at low frequencies nd higher values at high frequencies. The discrete approximation will be used to
test experimental spectra computed with discrete data.

7.11.5 Example: Sampling Red Noise

In this section we consider samples of red noise and use the red noise null hypothesis and F-statistic to test
for the significance of the peaks that appear. This example shows that one sample of red noise can show
a spectrum that appears to have peaks, but proper use of statistics shows these peaks to be insignificant.
As an example, we generate a time series of daily observations with an autocorrelation of α = 0.5 at a
one-day lag. We choose a chunk length of 256 days, which yields a spectrum with 128 estimates. To assess
statistical significance we use a red noise spectrum with the shape of 7.56 and the same variance as the
observed spectrum. We assess the number of degrees of freedom in the spectrum and then multiply the
null-hypothesis spectrum by the appropriate F-statistic.

Φ99 = ΦNull × Fν0.01
ν0 (7.58)

Here the F-statistic has three parameters, the number of degrees of freedom in the null hypothesis ν0, the
number of degrees of freedom in the sample ν, and the significance level, p = 0.01 for 99% confidence.
To increase the degrees of freedom and improve the robustness of the spectrum we can average multiple
realizations of the spectrum by using independent chunks of data.
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Figure 7.11 Power spectra of red noise with an autocorrelation of α = 0.5 at one day, using a Hamming window and a
chunk length of M=256 days. Examples are show for averages over 1, 5, 10 and 40 realizations. The red line is best fit using
7.56. The orange line is the 99% confidence limit, calculated as explained in the text.

Figure 7.11 illustrates the impact of averaging multiple realizations of a spectrum. A single realization
shows a peak around f =0.25 cycles per day that exceeds the 99% confidence level indicated by the orange
line. Since the spectrum has 128 chances to exceed the 99% confidence level, it is not surprising that one or
two frequencies exceed the 99% threshold. Since we did not predict a peak at f =0.25 and we know that the
observed spectrum has only about 2 degrees of freedom, we would not take this peak seriously. It is highly
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likely that a sample of red noise will produce a spikey spectrum by chance. Since it got off to such a good
start, by chance, with the first realization, the spectral peak around f =0.25 still passes the 99% threshold
of significance when 4 more realizations are added. It is still not significant, since we have no a priori reason
to expect it in the spectrum with 5 realizations. When we add 5 more realizations for 10 total, the f =0.25
peak finally is below the significance level, but a new peak at f =0.13 appears to touch the 99% threshold,
and again we have not predicted that peak in advance, so we would not take it seriously without further
analysis. If we include a total of 40 realizations the two peaks previously considered fall below the line, and
another one jumps out around f =0.34. Again, we expect 1 or 2 frequencies out of 128 to pass the 99%
threshold by chance. An extremely large sample would be needed to get all of the kinks and wiggles out of
the experimental spectrum. The lesson here is to insist on sufficient quality and don’t become excited by
spurious peaks that appear by chance.

7.12 Prewhitening

The previous section discussed one method for determining the significance of spectral peaks emersed in red
noise. It is also possible to remove the red noise from a data set prior to spectral analysis, a process called
”prewhitening” the time series. The approach is very simple, one just subtracts the red noise approximation
to the time series. A prewhitened time series xw(t) is computed from x(t) in the following way.

xw(t) = x(t) − αx(t− ∆t) (7.59)

Here α = r(∆t). To illustrate how prewhitening can work we consider red noise with an autocorrelation of
α = 0.5 for daily sampling, and we add pure periodicities with periods of 10 and 4 days. Figure 7.12 considers
red noise as in Figure 7.11, but adds periodicities at 4 and 10 days. To illustrate the effect of chunk length,
we include spectra computed withM = 256 andM = 128. To be fair, we give the shorter chunk length twice
as many realizations, so it has the same amount of data to work with. In this case with only red noise and
periodicities in the time series, prewhitening works beautifully and produces a white noise spectrum with
periodicities. The significance assessment is the same, however, and both methods and both chunk lengths
properly identify the periodicities as significant, assuming we had an a priori reason for expecting peaks at
4 and 10 days. Note that the noise used in each of the cases in Figure 7.12 was the same realization, but
different from the noise realization used in Figure 7.11.

7.12.1 Rossby-Gravity Waves in Reanalysis

Spectral analysis is an effective tool for identifying phenomena with a well-defined period. In the days before
global weather analyses, spectral analysis was used to identify waves in time series from a few stations
where balloon observations of wind and temperature were available. A classic example is the definition of
tropical waves from rawinsonde stations in the tropical Pacific. Examples include Kelvin waves (Wallace
and Kousky, 1968), Mixed Rossby-Gravity waves (Yanai et al., 1968) and the Madden-Julian Oscillation
(Madden and Julian, 1971). Nowadays reanalysis products reconstruct global maps of wind, temperature
and other meteorological variables, even where few observations are present, by simulating the dynamics
and thermodynamics of the atmosphere as part of the interpolation process. Here we will look for the Mixed
Rossby-Gravity wave discovered theoretically by Matsuno (1966) and later observed by Yanai et al. (1968).
We expect the MRG wave to have a periodicity around 4-5 days in the meridional (north-south) wind at
the equator. We will look for it in the central equatorial Pacific between 190E and 210E. We use data every
5-degrees of longitude and average the spectra together. Data for calendar years 2000-2015 are used and the
annual cycle is removed.

Figure 7.13 shows power spectra of the meridional wind at 850hPa at the equator using three different
methodologies, plus a contour plot of the fraction of variance in the 3 to 6-day period band. Our expectation
is that a spectral peak will appear near 4 to 5 days associated with the theoretical prediction of the Mixed
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Figure 7.12 Power spectra of red noise with an autocorrelation of α = 0.5 at one day plus harmonics with periods of 4
and 10 days. Spectra are computed using a Hamming window and chunk lengths of M=256 and M=128 days. Spectra with
and without prewhitening are shown. To be fair, the same number of data are presented to each analysis, so the shorter
chunk length of 128 days is given 80 realizations compared to 40 for the longer chunk length. The orange line is the 99%
confidence limit, calculated as explained in the text.
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Figure 7.13 a) Power spectrum of the meridional component of wind at the equator and 850hPa averaged over the
longitudes of 190-210E using a chunklength of a) M = 64, b) M=64 with prewhitening, c) M = 128. d) contour plot of the
fraction of the total power that is contained in the 3-6 day period band as a function of latitude and pressure, computed
with M = 64 without prewhitening. Red and orange curves indicate the red noise null hypothesis and 99% confidence level.
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Rossby-Gravity wave. To distinguish 4 from 5 days we need a bandwith of ∆f =
( 1

4 − 1
5
)
/3 = 1

60 , which will
be nicely accomplished with a chunk length of M = 64. For comparison, we also show a chunk length of
M = 128, which shows some additional detail that does not appear to be significant. Because the timeseries
has such a strong peak in variance near 4.5 days, a red noise fit is not a good fit to the spectrum. If we
remove our best fit to red noise from the time series by prewhitening, then we get a slightly more pleasing
appearance (Fig. 7.13b), but no real difference in interpretation. Some autocorrelation remains after the
red noise is removed because the periodicity itself will contribute autocorrelation . Plotting the ratio of the
variance in the 3 to 6-day period range to the total variance (Fig. 7.13d) shows that the periodicity is confined
near the equator and to the lower troposphere, although it does appear again in the lower stratosphere.

7.13 Multi-Taper Method of Spectral Analysis

In the Welch’s Overlapped Segment Averaging (WOSA) method described in section 7.9.3, a single window
function is applied to different segments of the time series and then averaged to produce a final spectral
estimate with robustness and good spectral response properties. The choice of chunk length and window
shape is based on the spectral resolution and degrees of freedom desired. Different chunk lengths and window
shapes give optimal performance for different ranges of frequency. As the name implies, the multi-taper
method (Thomson, 1982) uses a set of different data tapers to try to provide an optimal estimate of the
spectrum of the time series. A nice description is given in Percival and Walden (1993). The idea is to choose
a set of orthogonal tapers that provide optimal resolution and minimum leakage. A set of such tapers is
devised that are harmonics on the data interval, and then the average of spectra computed using a number
of these tapers is formed. Such a technique can give better results in some cases.

7.14 Maximum Entropy Spectral Analysis

Maximum entropy spectral analysis is a technique that can be used when you have a short period of record,
but you need more spectral resolution that you can get by doing traditional Fourier Spectral analysis on
the available data (Marple, 1987). It provides this extra spectral resolution by extending the autocovariance
matrix in a way that adds the least information to the covariance matrix (maximum entropy). It will tend
to strongly localize spectral peaks, so you can determine their location very precisely. The problem is that it
has adjustable parameters that can be used to get a spectrum of arbitrary sharpness, and it may split peaks
if the order of approximation is too high. The tools for assigning statistical significance to the results of such
an analysis are uncertain. It is best used in conjunction with traditional Fourier spectral analysis, after you
have established the significance of periodicities in the time series of interest.

7.15 Cross Spectrum Analysis

Cross spectral analysis allows one to determine the relationship between two time series as a function of
frequency. Normally, cross-spectral analysis makes sense when statistically significant peaks at the same
frequency have been shown in two time series. In that case we wish to know if these periodicities are related
with each other and, if so, what the phase relationship is between them. One may extend this concept a bit
by considering whether it may make sense to do cross-spectral analysis even in the absence of peaks in the
power spectrum. Suppose we have two time series whose power spectra both are indistinguishable from red
noise? Under these circumstances what might cross-spectral analysis still be able to reveal? It might be that
within this red noise spectrum there are in fact coherent modes at particular frequencies. We can test for
this by looking at the coherency spectrum.
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7.15.1 Complex Fourier Transform of Cross-Spectrum

The formulation for cross-spectral is based on Fourier Analysis. It is most compact to express this in complex
form, where variables have a real and an imaginary component. Any time series on the interval 0 < t < T
can be expressed as a complex Fourier transform.

x(t) =

N/2∑
k=−N/2

Fkxe
i 2πkt

T y(t) =

N/2∑
k=−N/2

Fkye
i 2πkt

T (7.60)

The cross spectrum of x and y is performed by taking the product of the Fourier coefficients.

Ck
xy = FkxF

k∗
y (7.61)

where the asterisk indicates a complex conjugate. The complex Fourier coefficients can be written in polar
form.

Fkx = FkRex + iFkImx = Rkxe
iθxk (7.62)

where
Rkx = ((FkRex )2 + (FkImx )2)1/2 (7.63)

and Rkx is real.
With these definitions, and integrating over time, we find that the cross spectrum of x and y is,

Ck
xy = RkxR

k
ye

i(θk
x−θk

y) = RkxR
k
ye

i∆θk

= RkxR
k
y(cos∆Θ

k + isin∆Θk) = Cok + iQk (7.64)

We thus see that the cross spectrum has a real part, the cospectrum, Co, and an imaginary part the
quadrature spectrum, Q, whose ratio determines the phase difference between the two time series at each
frequency indicated by the index k.

∆θk = arctanQk/Cok (7.65)

The cospectrum and quadrature spectrum can be averaged over many realizations and also over frequency
to compute robust phase differences between time series. The coherence uses the averaged spectra and cross
spectra to measure the degree to which the phase and amplitude differences remain constant across the
realizations and frequencies that are averaged over. The coherence-squared is expressed in terms of the
averaged Power spectra of the two time series, Φk

x and Φk
y and the averaged co-spectra and quadrature

spectra squared.

Qk

Cok
Θk

Figure 7.14 Diagram showing the relationship between the co-spectrum Cok, quadrature spectrum Qk and the phase
angle between two time series ∆Θk as a function of frequency index, k.
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Coh2(k) =
Co(k)2 +Q(k)2

Φ(k)Φ(k)
(7.66)

The coherence is analogous to the correlation coefficient, except it is a function of frequency. For a single
realization of a single frequency the coherency is one. As different realizations are averaged together, the
coherency will decline if the phase difference or amplitude ratio of the two time series varies from realization
to realization. Coherence measures the consistency of the linear relationship between the two time series
as the number of realizations is increased. Tables for the statistical significance of the coherence have been
prepared that can test the null hypothesis that the coherence is zero (Amos and Koopmans, 1963) 10.1. The
uncertainty in the phase difference can also be related to the coherence (Goodman, 1957). The uncertainty
in the phase difference estimation increases as the coherence is reduced (Hartmann, 1974).

7.15.2 Example: Rossby-Gravity Wave Cross-Spectral Analysis

In Figure 7.13d it is shown that the ratio of meridional wind variance in the 3 to 6 day period band in the
central equatorial Pacific peaks in the lower troposphere on the equator. This is the structure we expect for
the Mixed Rossby-Gravity wave. In this section we perform cross-spectral analysis between the meridional
wind at the point on the equator at 210E and 850hPa and the meridional wind at other latitudes, longitudes
and pressures. Figure 7.15 shows coherence and phase as functions of both longitude and latitude and pressure
and latitude. The spectra are averaged over many realizations and all frequencies corresponding to periods
between 3.5 and 5 days. This analysis includes 91 realizations of its 64-day chunk length, and 7 frequencies
are averaged together, so the cross-spectral analysis has about 600 degrees of freedom. The coherence has
statistically significant and reasonably large values over most of the domain shown. The phase decreases
toward the west and upward, indicating waves with westward and upward phase movement. The waves move
westward with time and tilt eastward with height in the troposphere. In the stratosphere the waves tilt the
opposite direction, consistent with upward propagation there (Holton and Hakim, 2012). They change phase
by about 90-degrees in 20-degrees of longitude and so have an effective wavelength of about 8,000km, and
move westward at about 10ms−1.
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Figure 7.15 Cross-spectral analysis of the meridional wind at the equator, 850hPa and 210E, for periods in the range of
3.5 to 5 days. a) Coherence with the meridional wind at other latitudes and longitudes at 850hPa. b) Phase difference with
other latitudes and longitudes at 850hPa. c) Coherence with the meridional wind at other pressures and latitudes. d) Phase
difference with the meridional wind at other pressures and latitudes. A chunk length of M = 64 was used. Contour interval
for coherence is 0.05 and for phase is 30 degrees.
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7.16 Space-Time Spectrum Analysis

Mixed space-time spectral analysis is a straightforward extension of harmonic analysis to two dimensions. It
is most convenient if the spatial dimension is cyclically continuous, such as in the case of latitude circles, or
at least that the spatial dimension has fixed boundaries, like an ocean basin. In such cases we can look for
modes of variability in which spatial scales have particular temporal scales. If the behavior is indeed harmonic
(wavelike), then we expect mixed space-time spectral analysis to isolate any such modes that are present.
For example, if one did mixed space-time spectral analysis of a stringed instrument, one would definitely
expect to find a definite relationship between the length scales and the time scales of the oscillations.

Suppose we have a function of longitude, λ , and time, t. We can write:

x(λ, t) =
∑
k

∑
±ω

Xk,±ωcos(kλ±ωt+Θk,±ω) (7.67)

where +ω and −ω correspond to eastward- and westward-moving waves, respectively (Hayashi, 1971, 1979).
The zonal wavenumber, k, is the number of zero crossings of the cosine wave around a latitude circle.

If we have such an expansion then we can write the power spectrum as function of both wavenumber and
frequency as,

Pk,±ω(x) =
1
2X

2
k,±ω (7.68)

If we have two time series x(λ, t) and y(λ, t) we can write the cospectrum between x and y as,

Cok,±ω(x,y) = 1
2Xk,±ωYk,±ωcos

(
Θk,±ω(y) −Θk,±ω(x)

)
(7.69)

and the quadrature spectrum is,

Qk,±ω(x,y) = 1
2Xk,±ωYk,±ωsin

(
Θk,±ω(y) −Θk,±ω(x)

)
(7.70)

And so the coherence-squared is written,

Coh2
k,±ω(x,y) =

Co2
k,±ω(x,y) +Q2

k,±ω(x,y)
Pk,±ω(x) · Pk,±ω(y)

(7.71)

To obtain the expansion 7.67 we proceed by first performing a Fourier analysis in the longitude coordinate.

x(λ, t) =
∑
k

Ck(t)cos(kλ) + Sk(t)sin(kλ) (7.72)

We then perform a Fourier analysis in time of these cosine and sine coefficent time series.

Ck(t) =
∑
ω

Ak,ωcos(ωt) + Bk,ωsin(ωt)

Sk(t) =
∑
ω

ak,ωcos(ωt) + bk,ωsin(ωt)
(7.73)

Hayashi (Hayashi, 1971) shows through a straightforward manipulation that A,B,a and b can be related to
Xk,±ω as follows.

4X2
k,±ω = (A∓ b)2 + (±B− a)2 (7.74)

where X2
k,±ω is the space-time power spectrum we desire and the phase is given by,

ϕk,±ω = tan−1
(∓B− a

A± b

)
(7.75)
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7.16.1 Standing Waves

In space-time spectral analysis standing waves appear as equal contributions from eastward and westward
propagating waves. For example, consider the following simple analytic wave.

x(λ, t) = cos(kλ)cos(ωt)

=
1
2
(
cos(kλ−ωt) + cos(kλ+ωt)

) (7.76)

We thus see that a stationary wave whose amplitude oscillates in time is equivalent to equal amplitude
eastward and westward propagating waves with the same wavenumber and frequency. If we do mixed space-
time spectral analysis of such a wave it is hard to tell if it is two independent waves traveling eastward
and westward with the same wavenumber and frequency, or a stationary wave whose amplitude oscillates in
time. Figure 7.16 shows the space-time spectrum of an analytic zonal wavenumber 5 with a period of 5 days
computed with a window of 32 daily observations and based on a record of 264 days. Other details of the
procedure are discussed in section 7.16.2.
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Figure 7.16 Space-time spectral analysis of a standing wave of wavenumber 5 and period 5 days. The time spectral analysis
was done with a 32-day chunk and based on 264 days of record. Negative wavenumbers indicate westward traveling waves.
Frequency is given in cycles per day.

Such a spectrum presents two possibilities; A standing wave or two independent waves traveling in opposite
directions. How does one distinguish these two possibilities? One way to approach this problem is to ask if the
eastward and westward waves are related, are they coherent with each other, do they bear a constant phase
relationship to each other (standing wave), or are the eastward and westward waves linearly independent?
Two somewhat different approaches to this question have been presented. One way to judge this is to
formulate a coherence-squared between the eastward and westward waves (Pratt (1976); Hayashi (1977,
1979)). Another method is to look at the coherence in time between the sine and cosine coefficients of a
particular wavenumber. Schäfer (1979) uses the coherence in time of the sine and cosine coefficients to ask
whether what is seen are “waves” or “noise”.

An alternative method of separating standing and traveling oscillations has been proposed by Watt-Meyer
and Kushner (2015). This method assumes that the standing wave is the minimum amplitude of the eastward
and westward components, and defines the traveling component as the difference between the actual value
and the minimum value.

X
Standing
k,±ω = min

(
Xk,+ω,Xk,−ω

)
(7.77)

X
Traveling
k,±ω = Xk,±ω − XStanding

k,±ω (7.78)

Here Xk,±ω is defined in 7.67. Using the definitions in 7.77 and 7.78 has the advantages that the standing
and traveling components can be reconstructed for display, and the possibly important covariance between
the standing and traveling components can be explicitly computed.
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7.16.2 Example of Space-Time Spectral Analysis

In this section we will discuss an example of space-time spectral analysis of tropical winds and outgoing
longwave radiation (OLR). We obtain wind data from the ERA-Interim reanalysis project (Dee et al., 2011)
and OLR data from the NOAA daily record (Liebmann and Smith, 1996). Daily instantaneous 0Z ERA
Interim data were used beginning in 1979 and extending for 16 years. The daily OLR data used extend from
1979 through 2013.

Prior to spectral analysis the data were processed in the following way. The annual cycle was first removed
by fitting the first 4 harmonics of the annual period (365.25 days) to the entire data set. Next The data
were averaged in latitude from 15S to 15N to measure the equatorially symmetric part of the variability,
and a difference was taken of the average from the equator to 15N minus the average of the equator to 15S
to measure the equatorially anti-symmetric part of the variability. At this point we have time series at each
longitude. Next we prewhiten each time series by removing the red noise using the autocorrelation for each
time series following the procedure outlines in section 7.12. This is more objective than using the smoothing
and ratioing procedure employed by Wheeler and Kiladis (1999), and it retains the correct ratio of variance
at different frequencies. The data are now ready for analysis. The first step is to do a Fourier transform
in longitude to divide the variance into different zonal wavenumbers as in 7.72. The data are spaced at 2.5
degrees, so that there are 72 grid points around a latitude circle. Since this is not a power of two, this Fourier
Transform is done by regressing sine and cosine functions onto the data in longitude at each time.

Next we need to perform the time Fourier analysis as in 7.73. For this we wish to use a fast Fourier
Transform, and therefore need to divide the time series into chunks whose lengths are powers of 2. If we
choose a chunk length of 128 days we have 45 realizations in a time series of 16 years. We therefore divide
the time series in to chunks of 128 days. Because we are going to use a Hamming filter, we overlap these
chunks by 50%. Once we have selected a chunk, we remove the linear trend and multiply it by the Hamming
window function. The FFT program we use returns the complex coefficients of a complex Fourier transform,
which we wish to translate into the real coefficients of a sine and cosine expansion.

x(t) =

ω∑
−ω

Fωe
iωt

x(t) =
∑
ω

Aωcos(ωt) + Bωsin(ωt)

(7.79)

If the original time series x(t) is real then the complex Fourier coefficients corresponding to positive and
negative ω must be complex congugates of each other. We can then easily show that,

Aω = 2Real(Fω) Bω = −2Imag(Fω) (7.80)

With these identities we can rationalize the real formulation of (Hayashi, 1971) with a standard complex
FFT. We cannot average the Fourier transforms, but must calculate the power spectrum X2

k,±ω for each
chunk and then average those together to get our averaged spectrum.

We plot the averaged space-time spectra with zonal wavenumber as the abscissa and frequency as the
ordinate, and denote westward moving waves with negative wavenumbers. This has the advantage of con-
necting the Mixed Rossby-Gravity wave across zero wavenumber in a way that would be less clear if the axes
were reversed. Figure 7.17 shows a few plots of the space-time spectra of OLR and wind that illustrate the
power of this technique.

Figure 7.17a shows the space-time power spectrum of equatorially symmetric OLR. Westward propagating
Rossby waves are seen, but more prominent are the eastward-propagating Madden-Julian Oscillation (MJO)
at low frequencies and low zonal wavenumbers and eastward propagating convectively-coupled Kelvin waves
spanning wavenumbers 2 to 8 and periods from 10 to 3 days. The anti-symmetric OLR (Fig. 7.17b)shows
some low-frequency variability across a larger range of wavenumbers, the westward propagating Rossby waves
and a new feature centered at zonal wavenumber zero and a period of 4 days that represents a broad range
of mixed Rossby-gravity waves corresponding to those investigated in section 7.12.1.

Space-time power spectra for symmetric 850hPa winds are shown in Figures 7.17c,d. The MJO is very
apparent in the symmetric zonal wind, as are the Kelvin waves. The symmetric zonal wind also shows a
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Figure 7.17 Space-time spectral analysis of equatorial waves. a) OLR averaged over 15S-15N, b) OLR averaged over 0-
15N minus OLR averaged over 0-15S, c) Zonal wind at 850hPa averaged over 15S-15N, d) Meridional wind averaged over
15S-15N. Negative wavenumbers indicate westward traveling waves. Frequency is given in cycles per day.

nice peak in variance associated with the 5-day wave of zonal wavenumber 1 (Geisler and Dickinson, 1976;
Hendon and Wheeler, 2008). The mixed Rossby-gravity waves are seen in the symmetric meridional wind.
The westward propagating Rossby waves seen in the OLR show up better in the space-time power spectra
of the asymmetric components of velocity, which are not shown here.




