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Abstract

The behavior of the interface between the precipitating and non-precipitating regions is analyzed in an

idealized model for the large scale atmospheric circulation. This model uses a quasi-equilibrium relaxation

closure in which convection acts to removed the convective instability. It is shown that in the strict quasi-

equilibrium limit, i.e. for instantaneous convective adjustment, the boundary between the dry and moist

regions can exhibit a discontinuity in the precipitation rate and vertical velocity. This interface, referred

here to as a precipitation front, behaves as a propagating shock. Three distinct precipitation fronts can

be obtained: drying front, slow moistening front and fast moistening front. The front velocity is distinct

from the propagation speed of dry and moist disturbances and must be determined by solving a Riemman

problem. Stationary precipitation fronts are also found in steady solutions for idealized Walker circulations

in both one and two dimensions. Dry gravity waves and coupled convective-gravity waves are partially
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transmitted and partially reflected when they encounter a precipitation front. Similarly, it is also shown

that advection of a water vapor perturbation into a precipitation front generates propagating waves on both

sides of the front. For small perturbations, the reflection and transmission coefficients can be determined

analytically. For large perturbations, the interaction with the precipitation front is highly nonlinear, and

can result in a change in the direction of propagation of the front.

The theory for precipitation fronts discussed here can be viewed as an extension of the Strict Quasi-

Equilibrium (SQE) theory for the tropical atmosphere. This theory makes it possible to solve the SQE

equations when deep convection is inactive in some portion of the atmosphere, and capture the fundamental

non-linearity associated with the onset of precipitation in the SQE framework.

1. Introduction

The interaction between convection and the large-scale circulation is one of the central problems for our understanding

of the tropical atmosphere. It is a key element in a wide variety of phenomena, ranging from the Hadley circulation

(Satoh 1994; Pauluis 2004), Walker circulation (Bretherton and Sobel 2002), intraseasonal variability (MJO),

hurricanes (Emanuel 1986), or equatorial waves (Wheeler and Kiladis 1999). At the core of the interactions lies two

fundamental properties of moist air. First, as a parcel of moist air ascends, its temperature decreases because of its

adiabatic expansion. After a sufficient drop in temperature, the parcel becomes saturated and water vapor condenses.

Hence, any sustained ascending motion in the tropical atmosphere is associated with clouds and precipitation. Second,

the condensation of water vapor results in a significant release of latent heat that compensates partially for the adiabatic

cooling. This latent heat release modifies the temperature of the atmosphere, which in turn impacts the circulation. The

balance between these two feedbacks – the enhancement of precipitation in ascending regions, and the atmospheric

response to latent heat release – has profound implications for the dynamics of the tropical regions.

The large scale separation between convective motions, which take place on horizontal scales of 10km or less, and

the synoptic and planetary scales (1,000 km to 10,000 km) has prevented until recently explicit numerical simulations

that would resolve both the convective and planetary scales. In General Circulation Models (GCM’s), which are

designed to study the planetary and synoptic scale circulation, the horizontal resolution is of the order of 100 km,

and is insufficient to adequately resolve convective motions. Instead, GCM’s rely on cumulus parameterizations that

determine the behavior of convective systems based on semi-empirical closure assumptions.
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One of the most successful convective closures is the quasi-equilibrium theory originally proposed by Arakawa

and Schubert (1974) and is at the core of other representations of convection such as that of Betts and Miller (Betts

1986; Betts and Miller 1986), or Emanuel (1991). The quasi-equilibrium theory postulates that convective motions act

to eliminate convective instability over a convective adjustment time-scale of a few hours. As a result, a convective

region is in a state of quasi-equilibrium between the destabilizing effects of the large-scale circulation and external heat

sources and the stabilization by convective motions. As the convective adjustment time-scale is short in comparison

to the time-scale associated with synoptic or planetary circulation, the amount of convective instability, quantified in

terms of the cloud work function (Arakawa and Schubert 1974) or Convective Available Potential Energy (Xu and

Emanuel 1989) remains small in convectively active regions.

The quasi-equilibrium theory predicts the existence of coupled convective-gravity waves resulting from the

interaction of convection and large-scale circulation (Neelin et al. 1987; Emanuel 1987; Emanuel et al. 1994, ENB

herfater). In the quasi-equilibrium framework, convection is more intense during periods of large scale ascent, so that

latent heat release due to condensation compensates partially for the adiabatic cooling. As a result of this correlation

between latent heat release and vertical ascent, the propagation speed of a disturbance is reduced in comparison to

what it would be in the absence of condensation. Wheeler and Kiladis (1999) have recently used satellite observations

to identify such coupled-convective gravity modes, as well as their faster uncoupled counterparts. They estimate that

coupled convective gravity waves propagate horizontally at a speed of about 15m s−1, which is about three times

slower than a dry wave with the same depth.

One of the key parameters in quasi-equilibrium closures is the convective adjustment time, i.e. the time it takes

for convection to remove convective instability. Various studies argue that this time should be between 2 and 24 hours

(Betts 1986; Bretherton et al. 2004)). Given that this time scale is much shorter than the time scale of the planetary

scale circulation, ENB have proposed the Strict Quasi-Equilibrium (SQE) as the limit of the quasi-equilibrium theory

for infinitely short convective adjustment time. In SQE, the atmospheric is instantaneously relaxed toward a moist

adiabatic density profile in convective regions, and this eliminates the need for a described description of the behavior

of individual clouds. As such, SQE offers a very elegant simplifying assumption for theoretical investigations of the

interaction of convection and the planetary scale.

The SQE framework as presented in ENB has an important limitation: it can only be applied for an atmosphere

where there is precipitation everywhere. The main question here is not how to describe the behavior of the atmosphere

within the dry (non-precipitating) and the moist (precipitating) regions, but rather how to determine the evolution of the
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interface between these two regions. This problem arises directly from the physical requirement that the precipitation

rateP can only be positive:

P ≥ 0. (1)

This constraint imposes a strong nonlinearity on the flow, as any solution of the equations of motion which produces

a given precipitation rateP > 0, the reverse circulation would require a negative precipitation rate and is thus is not

realizable. The primary goal of this paper is to describe the behavior of the interface between the dry and moist regions

and to analyze the nonlinearity associated with the onset of precipitation.

Frierson et al. (2004) demonstrates the existence of precipitation fronts in an idealized model of the tropical

atmosphere. A simplifed discussion of the mathematical framework of Frierson et al. (2004) is presented in section 2.

The model equations are similar to that of the Quasi-equilibrium Tropical Circulation model (QTCM Neelin and Zeng

(2000)), with a quasi-equilibrium closure for the precipitation rate. It is shown the quasi-equilibrium formulation for the

precipitation is dissipative. In the limit of infinitely short adjustment time, the dissipation is concentrated at the interface

between the dry and moist regions. This interface exhibits a discontinuity in precipitation and vertical velocity, and in

the horizontal temperature and humidity gradients. These precipitation fronts behave as dynamical shocks, moving at a

velocity that differs from the dry and moist propagation speeds. Three types of fronts are identified: the drying fronts,

the slow moistening fronts and the fast moistening fronts.

In section 3, the theory for precipitation fronts is applied to obtained stationary solutions for an idealized

Walker circulation. In the SQE limit, one-dimensional Walker circulations can exhibit a discontinuity similar of the

precipitation rate at the edge of the precipitation region. The presence of the discontinuity depend critically on both

the position of the precipitation region relatively to the wind, and on the intensity of the wind itself. For wind velocity

that are smaller than the propagation speed of moist wave, the precipitation front is located on the upwind side of the

precipitation regions. The results for the one-dimensional Walker cell are also generalized to two-dimensional Walker

circulations on a beta-plane.

The fourth section shows the behavior of precipitation fronts can be determined by solving a Riemann problem.

In the dry regions, the SQE equations are described by three Riemann invariants, two of them corresponding to the

invariants for the shallow water equations, and a third one corresponding to a moisture trace. In the moist regions, two

invariants are sufficient to describe the state of the atmosphere. Each type of precipitation front intercepts three different

characteristics, while only two characteristics are radiating away from the front. It is shown that the front velocity and

the Riemann invariants on these outgoing characteristics are uniquely determined by the invariants on the incident
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characteristics. It is also shown that precipitation fronts are associated with a nonlinear transmission and reflection

of a signal incident on the fronts. In the case of a small perturbation, linear reflection and transmission coefficients

can be determined analytically. These calculations indicates that the precipitation fronts can be associated both with

over-reflection, and amplification of the transmitted signal. It is also shown that the encounter of a precipitation front

and a humidity perturbation will generate gravity waves on both sides of the fronts.

These results are summarized in the last section. It is argued that the combination of the SQE limit and the

theory for precipitation fronts offers one of the simplest frameworks to study the large-scale circulation in the tropical

atmosphere. The theory for precipitation fronts outlined here describes the behavior of the interface between dry and

moist regions, both in terms of the displacement of the interface, and in terms of the transfer of signals between the

dry and moist regions. The precipitation front theory leads to an interesting prediction that incident waves should be

partially reflected and partially transmitted when encountering the interface between the dry and moist regions.

2. Precipitation Fronts

2a. Model equations

The model used here is based on a Galerkin truncation of the equations of motion into a finite set of vertical modes. For

simplicity, only the first two modes are reatined, as in the QTCM. The zonal wind is given as the sum of the barotropic

wind U and first baroclinic modeU1: U(x, y, z) = U(x, y) + U1(x, y)ΨU (z), with ΨU (z) = cos(z) the structure

function for the zonal wind (z is a nondimensional depth that ranges from 0 at the surface to 1 at the tropopause).

The temperature and humidity are given byT (x, y, z) = T (z) + T1(x, y)ΨT (z) andQ(z) + Q1(x, y)ΨQ(z), where

T (z) andQ(z) are horizontally uniform temperature and humidity reference profiles, andΨT (z) = sin(z) andΨQ(z)

are the structure function for temperature and humidity. We ignore diabatic sources such as evaporation and radiative

cooling in this section for simplicity, but add these in Section 3 in our examination of the steady Walker cell. The

equations of motion on an equatorialβ-plane, after Frierson et al. (2004), are
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∂tU + U · ∇U + U1 · ∇U1 = −yk×U−∇Φ (2a)

∂tU1 + U · ∇U1 + U1 · ∇U = −yk×U1 +∇T1 (2b)

∂tT1 + U · ∇T1 = c2
d∇ ·U1 + P (2c)

∂tQ1 + U · ∇Q1 = −c2
d∆Q∇ ·U1 − P (2d)

∇ ·U = 0 (2e)

In the absence of precipitation and with no barotropic wind, the equations for baroclinic windU1 and temperature

reduce to the shallow water equations with characteristic speedcd, This dry propagation speed is given byc2
d =

π−1HCp∂zT + gH, with H the depth of the atmosphere, andCp the heat capacity at constant pressure. Typical values

for the tropical atmosphere yield a propagation speed of 40-50ms−1. The moisture stratification∆Q is a function

of the reference humidity profileQ and structure function. A complete derivation of these equations is available in

Frierson et al. (2004), which is itself adapted from the procedure used in the QTCM (Neelin and Zeng 2000). Notice

also that a similar set of equations can be derived for a two-layer system such as in Lapeyre and Held (2004). Note that

while the humidity is primarily concentrated in the lower troposphere, the humidity advection in our model is done

solely by the barotropic wind. This results from the use of a uniform structure function in height for the humidity. In

contrast, the QTCM which includes a baroclinic advection term in the moisture equation. The potential consequences

of such baroclinic moisture advection for the dynamic of the precipitation fronts are discussed in the final section.

This system of equations is incomplete until we specify the precipitation rate. We consider here a simple

representation of deep convection in which precipitation relaxes the humidity perturbation to a reference value (in

non-dimensional units) in regions where deep convection is active. In regions where there is convective inhibition, i.e.,

where the perturbation humidity is smaller than the critical value, the precipitation vanishes. This yields

P =
Q1 −Q∗

τ
for Q1 > Q∗

= 0 for Q1 ≤ Q∗.

(3)

Here,τ is the relaxation time, andQ∗ is the critical humidity at which convection is initiated. The critical humidity

can be chosen to be a function of temperatureQ∗ = Qs + αT1, and equation can be viewed as relating the amount

of precipitation to the amount of Convective Available Potential Energy (APE) in the column. It is shown in Frierson
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et al. (2004) that, if a new humidity variable is defined byQ′
1 = Q1 −Qs − αT1, one obtains a new set of equations is

mathematically equivalent to the caseQ∗ = 0, so only this case is discussed hereafter.†

In the limit of vanishingτ , precipitation instantaneously relaxes the water content to its saturation valueQ∗ = 0

in the moist region, with the precipitation to be given by

P = −c2
d∆Q∇ ·U1 for Q1 = 0 and ∇ ·U1 < 0

P = 0 otherwise.

(4)

In this case, the temperature equation (2c) in the moist regions can be written as

∂tT1 + U · ∇T1 = (1−∆Q)c2
d∇ ·U1. (5)

In the SQE limit, the governing equation in the moist regions (2b) and (5) behaves as the shallow water equations with

a moist propagation speedcm that is smaller than the propagation speed in the dry region:

cm = (1−∆Q)1/2cd. (6)

In our simplified model,∆Q is the ratio of the latent heat stratification to the dry static energy stratification. Yu et al.

(1998) have shown that in the tropics, these two quantities are almost equal, with∆Q ≈ 0.9. This implies that the

moist speed is approximatelycm ≈ 0.3cd ≈ 15ms−1.

In the absence of barotropic flow (U = 0), the equations (2b-2d) reduce to the linear shallow water equations,

with different propagation speeds in the dry and moist regions. The problem however remains nonlinear because of

the transition from precipitatingP > 0 to non-precipitatingP = 0. The nonlinearity is associated with the behavior of

the interface between dry and moist regions, and affects both how the interface moves, and how a signal propagates

across it. Before studying the interface in section 2d, one must first ensure that the SQE limit is at least mathematically

consistent when dry and moist regions are present.

2b. Dissipation in quasi-equilibrium

In this section, we show that the solutions of (2a-2a) are well-behaved in the SQE limit of infinitely short convective

adjustment. Well-behaved here means that solutions are bounded and obey certain smoothness properties. From a

physical point of view, a quantity that can be interpreted as a moist version of the available potential energy is found

to be decreasing with time, implying that the SQE system is dissipative.

†From a physical point of view, the rescaled variableQ′
1 = Q1 −Qs − αT1 measures of the instability in the column, and the humidity variable

in the caseQ∗ = 0 should be interpreted as an ersatz for CAPE.
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For simplicity, only an atmosphere with no barotropic windU = 0 is considered here. An equation for the sum

of the available potential energy and kinetic energy can be obtained by multiplying (2a) byc2
dU1 and (2c) byT1 and

adding them together:

∂t

(
c2
d|U1|2

2
+

T 2
1

2

)
= ∇ · (c2

dU1T1) + PT1. (7)

In the absence of precipitation (P = 0), the right-hand side is the divergence of a flux, and equation (7) corresponds to

the global conservation of the sum of the available potential energy and kinetic energy in the shallow water equations.

When precipitation is present however, it can act as a source or a sink of available potential energy depending on

whether it is positively or negatively correlated with temperature. Hence, the sum of available and kinetic energy is not

necessary conserved, as would have been the case in the absence of precipitation.

One way around this problem is to add an additional component to the energy equation to account for the

fluctuations of moisture. First, a saturation temperature is defined byTw = T1 + Q1

∆Q
. Its tendency is obtained by

combining equations (2c) and (2d) :

∂tTw = ∂t

(
T1 +

Q1

∆Q

)
= −1−∆Q

∆Q
P (8)

The quantityTw = T1 + Q1

∆Q
can be thought of as the temperature that the atmosphere column would have if it were

brought to saturation (Q1 = 0) by imposing the necessary vertical motion in the column. Note that this saturation

temperature is only affected by precipitation which always reduces it.

We can now define a quantityS as

S =
c2
d|U1|2

2
+

T 2
1

2
+

∆Q

1−∆Q

T 2
w

2

=
c2
d|U1|2

2
+

T 2
1

2
+

(∆QT1 + Q1)2

2∆Q(1−∆Q)
.

(9)

The tendency forS is

∂tS −∇ · (c2
dU1T ) = −PQ1

∆Q
. (10)

In quasi-equilibrium, the precipitation is correlated with humidity (2a), and the second term on the right hand-side is

always negative:

∂tS −∇ · (c2
dU1T ) ≤ 0. (11)

This indicates that the quasi-equilibrium system is a dissipative system. On a closed domain, the integral ofS can

only decrease. As this integral is a L2 norm, this guarantees that solutions remains bounded for all time. In SQE,
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the correlation betweenP andQ vanishes in the dry and moist regions. It may seem that the system becomes non-

dissipative. However, asτ−1 becomes infinitely large, there is significant dissipation in a narrow region at the interface

between the dry and moist regions.

2c. Gradient formulation

Remarkably, the dissipative nature of the SQE system extends to the first order derivative. The equations of motion

can be written in terms of the divergenceD1 = ∇ ·U1 and vorticityζ = ∇×U1 of the baroclinic wind:

∂tD1 = ∇ · ∇T1 − u1 + yζ1 (12a)

∂tζ1 = −v1 − yD1 (12b)

∂t∇T1 = c2
d∇D1 +∇P (12c)

∂t∇Q1 = −c2
d∆Q∇D1 −∇P. (12d)

Here,u1 andv1 are the zonal and meridional components of the baroclinic wind. A quantityS1 is defined by

S1 =
c2
dD

2
1 + c2

dζ
2
1 + |∇T1|2

2
+
|∆Q∇T1 +∇Q1|2

2∆Q(1−∆Q)
. (13)

Its tendency is given by

∂tS1 +∇ · (c2
dD∇T1) + ∂x(c2

d(u
2
1 + v2

1)) + c2
d(u1∂yv1 − v1∂yu1) = −∇P · ∇Q1

∆Q
. (14)

The fourth term on the left-hand side is not a flux, and can potentially lead to a global increase in the integral ofS1.

This term can be traced back to variation of planetary vorticity and disappears forβ = 0 or in the absence of rotation.

As it is also independent of the convective adjustment time, any growth it might induce would take place on time scales

much longer thanτ in the SQE limit.

In contrast, as long as the precipitation is a monotonically increasing function of humidity (dP
dQ1

> 0), the right-

hand side of (14) is always negative:

−∇P · ∇Q1

∆Q
= −

dP
dQ |∇Q1|2

∆Q
< 0. (15)

Precipitation acts as a dissipative mechanism that reduces the global integral ofS1.

The fact that precipitation acts as a dissipative mechanisms for the quantitiesS andS1 has important implications

for the mathematical behavior of the solutions. The global integral of the sum ofS andS1 is a norm for the Sobolev
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spaceH1 of functions with square integrable first derivatives. Such a space includes continuous functions which are

piecewise differentiable, but excludes discontinuous functions. The dissipative nature ofS andS1 guarantees that if one

starts with an initial condition belonging to the Sobolev spaceH1, it will remain there at all time. In particular, solutions

with smooth initial conditions do not develop any discontinuities inU , T , or Q. This also ensures that solutions with

discontinuities in their first order derivatives are well-behaved and can be solved in the weak sense.

Higher order derivatives do not exhibit the same dissipative properties. If one constructs an equivalent toS1 based

on the second derivatives, its tendency would include a term in

−∂xxP∂xxQ = −dP

dQ
(∂xxQ)2 − d2P

dQ2
(∂xQ)2∂xxQ.

The second term on the right-hand side can be of either sign, and second order derivatives can grow indefinitely.

Furthermore, such growth would occur on the convective timescale. In the SQE limit of infinitely fast adjustment, this

corresponds to an instantaneous generation of a discontinuity in the first derivatives of the state variables and in the

precipitation rate. These discontinuities, which represent the infinitely sharp interfaces between dry and moist regions

which develop in SQE, we call “precipitation fronts.”

2d. Propagation of precipitation fronts

To develop a theory for the movement of the interfaces between dry and moist regions in the tropics, we consider here

the propagation of a precipitation front in a one-dimensional channel, with no rotation or barotropic wind. In this case,

the prognostic variables are the vertical velocityW = −D1, and the zonal gradients of temperatureTx = ∂xT1 and

humidityQx = ∂xQ1:

∂tW = −∂xTx (16a)

∂tTx = −c2
d∂xW + ∂xP (16b)

∂tQx = ∆Qc2
d∂xW − ∂xP (16c)

Discontinuities inW , Tx, or Qx are handled by using a weak formulation of the equations in which the governing

equations (16a - 16c) are integrated across the discontinuity. The fact that such solutions are mathematically well-

behaved is guaranteed by the dissipation of the quantitiesS0 andS1 discussed in the previous section. Solutions are

assumed to be of the form(W,Tx, Qx)(x− st, t) with the discontinuity located atx− st = 0 ands the displacement

speed of the discontinuity. It is assumed here without loss of generality that the moist region is located on the positive

side of the front.
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For an equation of the form

∂tφ = ∂xF (φ),

integrating across a jump at x = 0 yields

−s[φ] = [F (φ)]

The bracket denotes a difference taken across the interface[φ] = φ+ − φ−, and the indices+ and− refer to the value

of the function on the right and left side of the interface. The key assumption here is that the solutionφ remains square

integrable at all time. In the case of the moisture fronts, the dissipation ofS andS1 (equations 10 and 14) guarantees

that the solutions are well-defined. Applying this procedure to (16a - 16c) yields:

−s[W ] = −[Tx] (17a)

−s[Tx] = −c2
d[W ] + [P ] (17b)

−s[Qx] = c2
d∆Q[W ]− [P ]. (17c)

This is a system of 3 equations with 9 unknowns. One can also take advantage of the properties of the solutions in the

dry and moist regions to obtain additional constraints on the solutions.

In the moist regions, we have three constraints:

P+ ≥ 0 (18a)

Qx+ = 0 (18b)

P+ = c2
d∆QW+. (18c)

The first constraint is the requirement that precipitation be positive at all times. The second arises from the fact that

the humidity is equal to the convective threshold. The third equation is obtained by taking∂tQ = 0 in the moisture

equation.

For the dry regions, three constraints can be obtained:

P− = 0 (19a)

Qx− ≥ 0 (19b)

sQx− = −∆QW− (19c)
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The first constraint here is the requirement that here be no precipitation in the dry regions. The second results from the

fact that the humidity must be lower than the convective threshold in the dry regions, but is equal to it at the interface

with the moist region. The third constraint is the equation for the discontinuity inQx in (17c), in which the constraint

onP+ andQx+ have been used.

Using the constraints onP− andP+ in equation (17b) yields

−s[Tx] = c2
dW− − c2

mW+. (20)

An expression for the propagation speeds is then obtained by combining this latter equation with (17a):

s2 =
c2
mW+ − c2

dW−

W+ −W−
. (21)

However, not all values ofs are realizable due to two requirements: that precipitation be positive in the moist region

P+ ≥ 0, and that the moisture must be lower than the convective threshold in the dry region (Qx− ≥ 0). Using

these constraints with 21, one finds that three different sets of acceptable solutions can be obtained, leading to

the classification of preciptation fronts into three distinct categories: drying fronts, slow moistening fronts and fast

moistening fronts.

A drying front occurs when the interface moves into the moist region (s > 0). The constraints (19b) and (19c)

imply that the vertical velocity on the dry side must be negative,W− ≤ 0. It then follows that the displacement speed

(21) is between the moist and dry propagation speeds:

Drying front :W+ > 0, W− < 0, cm < s < cd. (22)

Moistening fronts correspond to the situation where the interface moves into the dry region (s < 0). In this case,

the constraints (19b) and (19c) indicate that the vertical velocity is positive in the dry regionW− ≥ 0. Equation (21)

can be written as:

W−

W+
=

c2
m − s2

c2
d − s2

(23)

This ratio can be positive only if eithers2 > c2
d or s2 < c2

m. The first case corresponds to a front faster than dry waves:

Fastmoistening front : W− > W+ > 0, s < −cd. (24)

The negative front velocity here indicates a front propagating into the dry regions (x < 0). The second corresponds to

a slow moistening front with the following characteristics:

Slow moistening front :W+ > W− > 0, −cm < s < 0. (25)
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The numerical experiments presented in Frierson et al. (2004) show that all three types of front are realizable and

stable.

3. Stationary Solutions

3a. One-dimensional Walker Cell

In the previous section, propagating precipitation fronts are shown to be a solution of the idealized atmospheric model

in the strict quasi-equilibrium limit. It is also possible to obtain stationary fronts. Let us first derive a steady solution

for a one-dimensional Walker circulation with imposed evaporationE and radiationR. For a steady solution, the

equations of motion are

−UW = ∂xT (26a)

U∂xT = −c2
dW + P −R (26b)

U∂xQ = c2
d∆QW − P + E (26c)

In this problem, a prescribed barotropic windU is imposed. It is also assumed here that the evaporation and radiation

are smooth functions ofx. The existence of steady solutions requires that the average radiation balances the average

evaporation: ∫
Rdx =

∫
Edx. (27)

In the absence of barotropic wind,U = 0, equation (26a) implies that the temperature is uniform in a steady state

solution∂xT = 0. Adding (26b) and (26c) together also indicates that the vertical velocityW is as smooth as the

radiation and evaporation. Hence, in the absence of barotropic flow, the stationary solution is as smooth as the forcing

termsE andR, i.e., there is no stationary precipitation front.

In the presence of a barotropic flowU 6= 0, steady solutions can exhibit precipitation fronts, even when the

radiation and evaporation fields are smooth. A necessary condition for the presence of a steady front is derived from

equations (26a-26c). The precipitation rate can be obtained from equations (26a-26b):

P = R + (c2
d − U

2
)W. (28)
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As the precipitation vanishes in the dry region and the radiation is smooth, the precipitation on the moist side of the

front Pm is given by

Pm = (c2
d − U

2
)(Wm −Wd), (29)

where the subscriptsd andm refer to values evaluated at the dry and moist side of the boundary between dry and moist

regions. Adding (26c) and (28) yields

(c2
m − U

2
)W = −U∂xQ + E −R (30)

For smooth radiation and evaporation fields, using the fact that the humidity is uniform in the moist region (∂xQm = 0),

we get

(c2
m − U

2
)(Wm −Wd) = U∂xQd (31)

EliminatingWm −Wd between (29) and (31) yields

Pm =
c2
d − U

2

c2
m − U

2 (U∂xQd) (32)

For a givenU , the requirement that the precipitation be positive translates into a constraint on the sign ofU∂xQd. We

refer here to upwind and downwind fronts depending on the position of the dry regions in relation to the frontal

discontinuity. For an upwind front, the barotropic wind advects dry air into the frontal region. This situation is

characterized by a negative correlation between the barotropic wind and water vapor gradient:U∂xQd > 0. For a

downwind front, this correlation is negativeU∂xQd < 0. Equation (32) then yields a necessary condition for the

existence of precipitation fronts:

1) Upwind fronts can only exist for|U | ≤ cm or |U | > cd.

2) Downwind fronts are present forcm < |U | < cd.

Notice that the first condition corresponds to the condition for the existence of a moistening front traveling at the speed

s = −U . Similarly, the second condition corresponds to existence of a drying front moving at the speeds = −U .

3b. Analytic solution for 1-D Walker circulation

Let us consider now a steady Walker solution on a periodic domain for a weak easterly barotropic wind−cm < U < 0.

In this case, if a precipitation front is present, it should be on the Eastern (upwind) side of the precipitating region, as

the precipitation rate must vary smoothly on the Western (downwind) side of the moist region.
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In the moist region, the solution of (26a-26c) is given by

∂xQ = 0 (33a)

∂xT = −UW (33b)

W =
E −R

c2
m − U

2 (33c)

P =
c2
d − U

2

c2
m − U

2 E − c2
d − c2

m

c2
m − U

2 R. (33d)

If the precipitation rate (33d) is always positive, then the moist region extends through the entire domain in steady

state.

When the precipitation rate given by (33d) is negative in some portion of the domain, there must be a dry (non-

precipitating) region. In this region, the solution is given by

P = 0 (34a)

∂xT = −UW (34b)

W =
−R

c2
d − U

2 (34c)

∂xQ = E − c2
d − c2

m

c2
d − U

2 R. (34d)

The issue here is to find the location of the interface between the dry and moist regions. Here, we take advantage of

the fact that for our choice of the barotropic wind−cm < U < 0, only a downwind front can be present. This implies

that the precipitation rate must be smooth on the western side of the moist region. The locationxW is chosen as one

where the precipitation rate (33d) must vanish:

E(xW )
R(xW )

− c2
d − c2

m

c2
d − U

2 = 0. (35)

For xW to correspond to the western boundary of the precipitation regions, the precipitation rate must increase with

x, i.e. d
dx (E

R ) > 0. If equation (35) has only two roots, the location of the western boundary is uniquely determined.‡

The moisture field in the dry region can be obtained by integrating (34d) westward:

Q(x) = Q∗ −
∫ xW

x

(
E − c2

d − c2
m

c2
d − U

2 R

)
dx (36)

‡If there are more roots, some roots may not yield a valid solution, but at least one would. In this case, the proper solution would have to be found

by trial and error on the different roots.
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The location of the Eastern edge of the moist regions corresponds to the pointxE where the atmosphere becomes

saturated again, i.e. whereQ(xE) = 0 in (36). OncexE andxW are found, the vertical velocity field can be determined

directly, and the temperature field can be obtained by integrating (33b) and (34b).

Figure 1 shows solutions for a forcing given by

R = 1 (37)

E = 1 + E0sin(
2πx

L
). (38)

Here,L = 40, 000km is the length of the domain. The value ofcd andcm are45ms−1 and15ms−1 respectively. The

two controlling parameters for this problem areU andE0. Here, we use a mean wind ofU = −0.1cd(4.5ms−1)and

vary the parameterE0 from E0 = 0.1, E0 = 0.2, andE0 = 0.4. All solutions exhibit a stationary precipitation front at

the upwind side of the precipitation region, with discontinuities in the precipitation and vertical velocity. In contrast,

the solution is smooth on the downside side of the precipitation regions.

3c. Two-dimensional Walker cells

On an equatorial beta-plane, the general solution would require a complete description of the frontal dynamics in two

dimensions, and is beyond the scope of the present paper. Rather, solutions to the two-dimensional Walker circulation

problem are derived from 1D solutions, and are shown to exhibit fronts. Consider the equations of motion on an

equatorial beta-plane for a steady flow:

U∂xu1 = βyv1 + ∂xT (39a)

U∂xv1 = −βyu1 + ∂yT (39b)

U∂xT = c2
d(∂xu + ∂yv) + P −R (39c)

U∂xQ = −∆Qc2
d(∂xu + ∂yv)− P + E (39d)

Here, we consider only solutions that are decaying away from the equator, with a structure function of the form

exp(−αy2), with α an arbitrary function. The state variables as well as the evaporation and radiation fields are thus of

the from:
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Figure 1. Solution for the one dimensional Walker circulation, forU = −0.1cd, andE0 = 0.1 (solid line),E0 = 0.2 (dashed line) and

E0 = 0.4 (dash-dotted line). Upper panel: precipitation rateP . Middle panel: vertical velocityW . Lower panel: humidityQ.

u1 = u1(x) exp(−αy2) (40a)

v1 = 0 (40b)

T = T (x) exp(−αy2) (40c)

Q = Q(x) exp(−αy2) (40d)

R = R(x) exp(−αy2) (40e)

E = E(x) exp(−αy2) (40f)
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The barotropic windU is imposed, and assumed to be constant everywhere. We are looking for a solution of equations

(39a-39d) in which the meridional velocityv vanishes. In this case, the zonal wind equation (39a) is the same as for

the one-dimensional problem:

U∂xu1(x) = ∂xT (x). (41)

The meridional momentum budget (39b) becomes

βyu1(x) = −2αyT (x). (42)

If the meridional structure of the solutions is such that

α = − β

2U
, (43)

and if there exists anx0 such that

T (x0) = u1(x0) = 0, (44)

then the equation for the zonal and meridional momentum (41) and (42) are equivalent. Equation (43) imposes the

meridional structure of the special solution of the Walker cell, while (44) can always be met, as the temperature in this

problem is defined up to an additive constant. Under these conditions, the equations are exactly the same as the one-

dimensional Walker circulation equations, and the steady solutions to the one-dimensional problem can be extended

to specific solutions of the two-dimensional Walker circulation. These special solutions are characterized by a purely

zonal flow. For−cm < U < 0, these solutions can exhibit a stationary precipitation front at the Eastern edge of the

moist region.

4. Riemann Problem

The three types of precipitation fronts found in section 2 each correspond to a different range of valid propagation

speeds. These fronts move at a speed that is distinct from the dry or moist speed. Hence, such fronts intercept signals

emanating from either the dry or moist regions. The expression (10) cannot be used directly to predict the propagation

speed of a front. Indeed, the value of the vertical velocity on both side of the fronts depends in part of the behavior of the

front itself. Instead, the front speed must be determined from the values of the Riemann invariants on the characteristics

incident on the front.
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4a. Characteristics

In the dry regions, the equations of motion (16a - 16c) can be rewritten as

∂t(W − Tx

cd
)− cd∂x(W − Tx

cd
) = 0 (45a)

∂t(W +
Tx

cd
) + cd∂x(W +

Tx

cd
) = 0 (45b)

∂t(∆QTx + Qx) = 0. (45c)

These three equations describe the Riemann invariants

Adp = W +
Tx

cd
(46a)

Adn = W − Tx

cd
(46b)

Adq = ∆QTx + Qx (46c)

on three characteristics. The first two correspond to eastward and westward propagating gravity waves. The third is

related to the quantityTw introduced in section 2. It can be thought of as a moisture trace that retains information on

the initial moisture distribution.

In the moist regions we have

∂t(W − Tx

cm
)− cm∂x(W − Tx

cm
) = 0 (47a)

∂t(W +
Tx

cm
) + cm∂x(W +

Tx

cm
) = 0 (47b)

Qx = 0. (47c)

These equations describe westward and eastward propagating waves moving at a speedcm, with the corresponding

invariants:

Amp = W +
Tx

cm
(48a)

Amn = W − Tx

cm
. (48b)

Note that in SQE, only two Riemann invariants are sufficient to describe the flow in the moist regions.

The evolution of the flow for a given set of initial conditions can be determined by the method of characteristics.

For an atmosphere that is uniformly dry or moist, it is straightforward to determine the flow at any time by using
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Figure 2. Schematic representation of the characteristics interacting with a propagating dry front. The front is propagating into the moist

region, at a speed that is intermediate between that of the dry and moist characteristics. The moisture trace corresponds to the third

characteristic in the dry region associated with the fluctuations of water vapor.

conservation of Riemann invariants along the different characteristics. In presence of a front, one must also determine

the propagation speed and the value of the characteristics coming out of the front from the knowledge of the incident

characteristics.

4b. Drying front

A dry front propagates into the moist region at a speed (relative to the ambient barotropic wind) between the dry and

moist speeds, as illustrated in Figure 2. There are three incident characteristics: the two moist characteristicsAmp and

Amn, and the incident dry characteristicAdp that catches up with the front from the dry side. From these, we need to

determine the propagation speed of the fronts, and the values of the two characteristicsAdn andAdm that emanate

from the front. This can be done by solving the system of equations (17a -17c), which yields:

s =
2Adp + (cm − c2

m)Amn − (cm + c2
m)Amp

2Adp − (1− cm)Amn − (1 + cm)Amp
(49a)

Adn =
AdpAmp(1− cm)2 + AdpAmn(1 + cm)2 − 4AmpAmnc2

m

4Adp −Amn(1− cm)2 −Amp(1 + cm)2
(49b)

Adq = cm(1− c2
m)

(1 + cm)AdpAmn − (1− cm)AdpAmp − 2cmAmnAmp

−2Adp − (cm − c2
m)Amn + (cm + c2

m)Amp
(49c)

The propagation speeds here is taken relative to the barotropic wind. It is a non-linear function of the incident

characteristics. The upper panel of Figure 3 shows the variation of the front speed as a function of the incident dry
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Figure 3. Upper panel: propagation speed of a dry front as a function of the amplitude of the incident dry wave, forcm = 0.3, and

Amp = Amn = 1.0. Lower panel: amplitude of the dry wave generated by a dry front as a function of the amplitude of the incident dry

wave, forcm = 0.3, andAmp = Amn = 1.0.

wave, forcd = 1 andAmp = Amn = 1.0. For a weak incident dry wave withAdp ≈ cmAmn, the fronts move at a low

speed, withs ≈ cm to cd. For a stronger dry incident wave withAdp >> Amn, the front speed becomes close to the

dry propagation speedcd. The lower panel of Figure?? shows the amplitude of the dry gravity wave emanating from

the same front.

4c. Slow moistening front

The slow moistening front propagates into the dry region at a speed between 0 and the moist speed, as illustrated in

Figure 4. The slow moistening front intersects three characteristics: the dry and moist characteristicsAdp andAmn,

and the stationary moisture traceAdq. The propagation speeds and the Riemann invariants on the two emanating
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Figure 4. Same as Figure 2 but for the characteristics incident to a slow moist front propagating into the dry region at a speed lower than

that of the moist characteristics.

characteristicsAdn andAmp are obtained by solving (17a - 17c):

s = − (cm − c2
m)Adp + cm(cm − c2

m)Amn

Adq − (cm − c2
m)Adp + (cm − c2

m)Amn
(50a)

Adn =
−(1− cm)cm(1 + cm)2AdpAmn − (1− cm)AdpAdq + 2c2

mAdqAmn

(1 + cm)Adq + cm(1− cm)(1− c2
m)Amn − 2cm(1− c2

m)Adp
(50b)

Amp =
AdpAmn(1− cm)(1 + cm)2cm + 2AdpAdq + AdqAmn(1− cm)cm

cm(1 + cm)(Adq + Adp(1− cm)2 + 2Amn(1− cm)cm)
(50c)

Figure 5 shows the propagation speed of a slow moistening front as function of the amplitude of the dry incident wave.

When the incident dry and moist invariants are comparable withAdp ≈ cmAmn, the front speed is close to zero. The

front speed increases tocm as the ratioAmn/Adp increases.

4d. Reflection and Transmission

The precipitation fronts propagate at a speed that is distinct from that of the characteristics in moist and dry regions.

The front speed is such that they always intercept three characteristics, while only two characteristics emanate from

the front. When either side of the front is perturbed, a signal will propagate on a characteristic incident to the front.

When the perturbation reaches the front, it will affect both the motion of the front and the characteristics emanating

from it. While this is inherently a nonlinear problem, some insights can be gained by examining the linear version that

arises when one considers the propagation of a small perturbation superimposed on a background flow.
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Figure 5. Propagation speed of a moist front as function of the amplitude of the incident dry wave, forcm = 0.3, Amn = 1, andAdq = 0.

From a linear wave point of view, the moist and dry regions are characterized by two different refraction indices.

The abrupt transition in the refraction index that occurs at the precipitation front results in partial refraction and partial

transition of an incident wave. The reflection and transmission coefficients can be obtained directly by taking the partial

derivative of equations (49b-49c), or (50b-50c).§ For example the reflection coefficient for a incident dry wave on a

dry front is given by

R =
∂Adn

∂Adp
|Amp,Amn

(51)

For any given front, we have a set of six different reflection-transmission coefficients given by the derivatives of the

two outgoing amplitudes by the three incoming signals. These coefficient are not constant but depends on the incident

characteristics. Figure 6 shows two of the reflection and transmission coefficients for a drying front as function of

the magnitude of the incident dry characteristicAdp. In addition, as the different characteristics have different speeds

relative to the front, the frequency and wavelength of the reflected/transmitted signals will be different.

In addition to the two propagating gravity waves, the dry region has a third characteristic: the moisture trace

Adq. This characteristic accounts for the fluctuation of the water vapor content in the moist region, and interacts

directly with the different front. As illustrated in Figures 2 and 4, a moisture trace emanates from a drying front,

and intercepts a moistening front. In particular, when a moistening front encounters a perturbation in the water vapor

content, gravity waves will be generated in both the dry and moist regions. For a small amplitude pertubation, Figure

§An alternative method for determining the reflection and transmission coefficients is to take advantage of the fact that the precipitation fronts are

characterized by a discontinuity in the derivative ofU , T , andQ, while the state variables remain continuous. This implies that the magnitude of

the reflected and transmitted waves can be determined directly by imposing the continuity ofU , T , andQ. This yelds a simple expression for the

reflection and transmission coefficient expressed now in term ofU , V , andT .
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Figure 6. Reflection and transmission coefficients for a drying front as function of the incident dry wave , forcm = 0.3, Amn = 1, and

Amp = 1. Upper panel: reflection coefficient∂Adn
∂Adp

for an incident dry wave. Lower panel: Transmission coefficient∂Adn
∂Amn

for a moist

wave moving toward the dry region.

7 show the ’reflection’ and ’transmission’ coefficients for a moisture trace perturbation incident on moistening front.

’Reflection’ here refers to the gravity wave emanating in the dry region - the same side as the the moisture trace - while

’transmission’ refers to the gravity wave propagating on the moist side - opposite to the moisture trace.

Remarkably, precipitation fronts allow for both over-reflection and

over-transmission of the incoming signal. Indeed, the upper panel of Figure 8 shows that the reflection coefficient for

an incoming dry wave on a slow moist front can be larger than one. Similarly, The lower panel of Figure 8 indicates

that the transmission coefficient for an incoming dry wave on the same slow moist front could be as large 5. In both

cases, fluctuations in the vertical velocity are amplified after encountering the precipitation front. Such over-reflection

and over-propagation should occur in both the freely propagating fronts and the stationary fronts discussed in section 3.

This behavior has been observed in our numerical simulations (not shown). However, reproducing the exact magnitude

of the theoretical value of the reflection coefficient did require the use short relaxation time of half an hour or shorter.
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Figure 7. Reflection and transmission coefficient for the moisture trace incident to a moistening front forcm = 0.3, Amn = 1, and

Adq = 0, as function of the amplitude of the incident dry wave. Upper panel: ’reflection’ coefficient∂Adn
∂Adq

for the gravity wave emanating

in the dry region. Lower panel: ’transmission’ coefficient∂Amp

∂Adq
for the gravity wave emanating in the moist region.

Longer relaxation time results in strong dissipation in the moist regions which tends to damp out the transmitted signal.

While the results from the linear theory might indeed require very short relaxation time to be quantitatively accurate,

they provide nevertheless a strong indication for amplification of disturbances after encountering a precipitation front

– behavior that should be present even for larger, non-linear disturbances.

5. Discussion

We have shown that in the limit of very short relaxation time, the quasi-equilibrium assumption results in solutions

with a discontinuity in the precipitation field and the first derivatives of the state variables. These discontinuities, called

precipitation fronts, behave similarly to hydrodynamical shocks. Their propagation speeds can be obtained through a

weak formulation of the equations of motions; these are distinct from the propagation speeds of the dry and moist
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Figure 8. Reflection and transmission coefficient for a dry wave incident onto a moistening front forcm = 0.3, Amn = 1, andAdq = 0,

as function of the amplitude of the incident dry wave. Upper panel: Reflection coefficient∂Adn
∂Adp

for a moist front, as function of the

amplitude of the incident dry wave, forcm = 0.3, Amn = 1, andAdq = 0. Lower panel: transmission coefficient∂Amp

∂Adp
for a moist front,

as a function of the amplitude of the incident dry wave, forcm = 0.3, Amn = 1, andAdq = 0.

characteristics of the system. Only specific ranges for the values of the frontal speed are permitted, which allow one to

classify the fronts into three categories: the drying front, the fast moistening front and the slow moistening front.

The theory for precipitation fronts outlined here, combined with the SQE framework of Emanuel et al. (1994),

offers a very simple conceptual framework to discuss the dynamics of the tropical atmosphere. In this framework,

disturbances in dry and moist regions obey the shallow water equations. The interfaces between dry and moist regions

correspond to precipitation fronts. We have shown here how to obtain from the governing equations the propagation

speed of the front as well as the values of the Riemann invariants emanating from the front. In this framework, the

intrinsic nonlinearity associated with the requirement that precipitation is always positive is manifested in the nonlinear

behavior of the precipitation fronts.

Disturbances encountering a precipitation front can be treated as moving between regions with different refractive
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indices. Hence, perturbations incident to a precipitation front will partially reflect and partially propagate across the

front. Reflection and propagation at the front are quite complex, and should be treated as a full non-linear problem.

Nevertheless, a linear analysis confirms the reflection and refraction properties of the front, and indicates the possibility

of over-reflection and propagation across the frontal boundary.

An intriguing extension of the one-dimensional theory discussed here is to investigate the propagation and

reflection problem on an equatorial beta-plane. In this case, the linear solutions in the dry and moist regions would

include Kelvin, Yanai and Rossby waves with the corresponding propagation speeds and Rossby radius. Solutions in

the dry and moist regions would need to be matched at the interface between the dry and moist regions. The main

difficulty lies in that the matching procedure must be performed along the entire interface, and not at a single location

as was the case in the one dimensional problem. The two dimensional Walker solutions discussed here is one example

of such a solution where a stationary front is conveniently located along a longitude line. As for the one-dimensional

case, one does expect disturbances to partially propagate and transmit across the front. This implies for example that

an incident Kelvin wave might be partially reflected as a Rossby wave when it moves from a moist to a dry region.

The mathematical framework for the precipitation fronts presented here is based on a simplified version of the

QTCM for which it is possible to fully derive the dissipation of a moist available energy. In contrast to the full

QTCM, this model omits the advection of the moisture by the baroclinic wind. Including such term adds a quadratic

non-linearity and can induce new types of behavior. A particular concern is that large-scale convergence can steepen

the moisture gradient and generate a discontinuity in finite time. While such behavior is a common consequence of

advection and is unrelated to the convection, it makes it impossible to obtain a dissipation statement for the gradient

formulation, as was done in section 2.c. The conditions that lead to an infinite increase in the humidity gradient

are rather exceptional and not likely to corresponds to an actual circulation. Furthermore, the weak solutions for

the precipitation fronts should still hold as long as there is no discontinuity in the state variables. Hence, while the

detailed effects of a baroclinic moisture advection still need to be investigated, the existence and overall behavior of

the precipitation fronts should not be affected.

Even though the precipitation front theory only describes the onset of precipitation in the limit of infinitely short

adjustment time, it also offers a good approximation for solutions within finite convective adjustment time. Frierson

et al. (2004) find that the propagation speed of precipitation fronts in SQE also serves to predict the speed at which the

interface between dry and moist regions moves for finite values of the adjustment time. Khouider and Majda (2005)

further confirm the existence of precipitation fronts in one and two dimensional numerical simulations. They also
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provide examples of non-linear interactions between a precipitation front and an incident gravity wave. Stechmann

and Majda (2006) show that for finite convective adjustment time, the frontal structure occupies a finite region, whose

extent depends both on the frontal speed and the adjustment time. The frontal velocity and the far field difference

between dry and moist regions are however well captured by the SQE preciptation front theory. Simulations also

show that other theoretical predictions of the precipitation fronts, such as the location of stationary fronts, and the

reflection/transmission of incident waves also occur with finite relaxation time.

The physical interpretation of precipitation fronts also sheds some light on the original quasi-equilibrium theory.

In their original argument, Arakawa and Schubert (1974) argue that convection acts to balance destabilization by

large-scale atmospheric motions. This adjustment is however not instantaneous, and one thus expects that convection

will be unbalanced for a short period or small region. In the idealized model used, here, these adjustment regions

are associated with the dissipation in the moist available potential energy (10) and its first derivative equivalent

(14). The dissipative terms in these equations are associated with horizontal fluctuations of convective instability

in the precipitation regions. In the limit of infinitely short adjustment time, the area where this dissipation occurs

collapses onto the frontal singularity. For finite adjustment times however, there is a finite dissipative boundary layer

at the interface between the dry and moist regions, as discussed in Stechmann and Majda (2006). This boundary

layer corresponds to a zone where convective instability fluctuates, i.e., where convective adjustment cannot balance

destabilization from external forcing. A key aspect of the precipitation front theory lies in that, while the boundary

layer collapses in the limit of very short dissipation time, dissipation still takes place at the interface. In other words,

right at the onset of precipitation, convection is unbalanced - even for infinitely short adjustment time. The finite extent

of the precipitation fronts obtained by Stechmann and Majda (2006) corresponds to the region where convection has

not yet equilibrated with the large-scale forcing, i.e. regions where significant convective instability would be present.

One may question whether precipitation fronts correspond to an actual phenomenon, rather than an interesting

conceptual model. While this issue cannot be answered at this point, it should be stressed here that as precipitation

fronts describe the onset of precipitation in the limit of instantaneous convective adjustment, they also offer a good

approximation for the behavior of the interface between the dry and moist region for finite convective adjustment

times. The precipitation fronts theory emphasizes the facts that the onset of precipitation introduces a very strong

non-linearity in the system resulting in very complex behaviors. Given that many convection schemes used in General

Circulation Models are based on quasi-equilibrium concepts, the mathematical description of the precipitation fronts

presented here can serve as a prototype to explain the behavior of these more realistic models.
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