Fundamentals of Climate Change (PCC 587): Introduction

DARGAN M. W. FRIERSON
DEPARTMENT OF ATMOSPHERIC SCIENCES

DAY 1: 9-25-13

- Professor: Dargan Frierson
- Home town: Wilmington, NC
 - Southeastern North Carolina, on the coast

Home town: Wilmington, NC

Wilmington, NC

Hurricane Fran, 1996

• Home town: Wilmington, NC

Wilmington, NC

Hurricane Floyd, 1999

• Home town: Wilmington, NC

Wilmington, NC

Hurricane Bertha, 1996

Home town: Wilmington, NC

Wilmington, NC

Hurricane Bonnie, 1998

Home town: Wilmington, NC

Wilmington, NC

Hurricane Diana, 1984

Undergraduate: North Carolina State, Raleigh, NC

Total precipitation from Hurricane Fran, 1996 (my freshman year)

After Grad School

- Grad school at Princeton (applied math)
- Postdoc (2 yrs) at University of Chicago
- Professor at UW starting 2007

At UW

- Research primarily on large-scale atmospheric responses to global warming
 - Both tropical and extratropical dynamics
- I love teaching!
 - I've taught Global Warming, Modeling the General Circulation of the Atmosphere, Atmospheric Motions, Geophysical Fluid Dynamics, Atmospheric Waves and Instabilities, Climate Dynamics, etc
 - Active in creating YouTube videos about atmospheric science with our outreach group

Texts

- Archer, Global Warming: Understanding the Forecast
- Brand new IPCC Report (Working Group I, Fifth Assessment Report)
 - Summary for policymakers will be posted Friday!
 - Final draft chapters will be posted Monday

Grading

- Homework/class participation: 25%
- Group presentation: 15%
 - On a chapter of the new IPCC report
- In-class midterm exam: 25%
 - Tentatively scheduled for Oct 30
- Final paper/short presentation: 35%
 - On topic of your choosing (pre-approved by professor)
 - o 6-8 page paper, 5-10 minute presentation of main ideas

Course Webpage

http://www.atmos.washington.edu/~dargan/587.html

Check it often! It'll have all reading assignments, links to the HW, slides from lectures, etc

First...

- A basic summary of the science of global warming
 - Reading assignment for the summary:
 - × Archer Chap 1: Humankind and Climate p.1-5
 - ▼ IPCC AR5 Summary for Policymakers (as far as you can get)

The Atmosphere From Space

Weather versus Climate

- Weather varies from one day to the next
- Climate: averages of the weather over a longer period of time
- Example:
 - You put on clothes for the weather...
 - Should I pack an umbrella?
 - You buy clothes for the climate...
 - Going where the climate suits my clothes lyrics from Lonesome Road Blues (traditional, e.g., Henry Whitter, 1924)
- Both weather and climate can be predicted with some fidelity

Weather vs Climate

- Weather is the individual storms
- Climate is the fact that all of them hit western WA!

Animation of cloud thickness from a climate model

What Factors Influence Climate?

- Sunshine
 - And relatedly, latitude
- Topography/mountains
- Proximity to oceans and large lakes
- Ocean currents
- Presence of trees/vegetation
- Etc.

THE ATMOSPHERE FROM SPACE...

90% of the mass of the atmosphere is within 16 km (10 miles) of the surface

Proportionally, the atmosphere is half as thin as seams on a basketball

It's remarkably thin...

A **thin atmosphere** means **we can change** atmospheric composition

We Modify the Composition of the Atmosphere

• Carbon dioxide (CO₂) has been measured at Mauna Loa, Hawaii since 1958

"Keeling curve": first measured by David Keeling in March '58

~ **25% increase** since the first measurement

Human induced: Due to **fossil fuel burning** (80%) and deforestation (20%)

Let's Look Way Back to 450,000 Years

• We're over **390 ppm** now

Natural variation over Ice Age Cycles:

180-280 ppm

Current rate of increase is **100-1000 times faster** than nature can change CO₂

Img src: Global Warming Art

CO₂ is a Greenhouse Gas

• Has been known for a long time (J. Fourier in 1824)

This is why it's hot

The Sun heats the Earth.

Greenhouse gases cause the Earth to be a lot warmer than if there was no atmosphere:

58° F (32° C) warmer

The natural greenhouse effect

Joseph Fourier

The Earth is Warming

More CO₂ -> warmer atmosphere (eventually)

Has it been getting warmer?

Warming has happened **almost everywhere**. **Northern high latitudes** have warmed the most. **Land** has warmed more than **ocean**.

SYR - FIGURE 2-6b

IPCC

Warm Compared to The More Distant Past?

 Proxy data is used for more distant reconstructions (e.g., the "hockey stick"):

What Else is Happening?

As temperatures rise →

• Sea level is rising → 20 cm = 8 inches

• Snow cover is decreasing →

Also glaciers are melting, Arctic sea ice is melting, species are shifting, etc

Src: IPCC AR4

Could the Sun be the Cause?

The Sun is nearly the weakest it's been in 35 years

Solar output

Sun is **weak** now, just coming out of a long minimum

In general, strength of solar variability is very weak (0.1% from max to min)

What's Predicted for the Future?

- A fundamental uncertainty is future human behavior
 - Will we reduce emissions, or will we burn fossil fuels more and more rapidly?
 - O How quickly will developing countries get rich?

Future Temperature Rise Predictions

• Uncertainty both in *human behavior* (colors) and climate *feedbacks* (shaded area around)

A Sampling of Future Topics

- Paleoclimate:
 - Ice Ages and hot climates of the past like the Cretaceous

Last Glacial Maximum

Present

The Cretaceous Seaway

Volcanoes and Climate

• How the Earth cools after certain types of volcanoes...

Eruption of Mount Pinatubo in June 1991 and its effect on global temperatures

And Man-Made Volcanoes!

- "Geoengineering": using technology to cool the Earth
- We'll discuss strategies like
 - Putting volcanic-type particles into the stratosphere
 - Space mirrors
 - Cloud machines
 - Fake trees

Right picture from Rolling Stone article "Can Dr. Evil Save the World?"

Why is the Climate like it is today?

Questions like:

- What determines the current climate mean state?
- Mean precipitation distribution:

TRMM Climatology (1998-2008)

Questions like...

• Why are the rainforests of the world at similar latitudes? And why are deserts at similar latitudes?

Natural Climate Variability: El Niño

Winners and Losers

Who will benefit...

• And who will it hurt the most?

Floods

And Droughts...

Lake Chad

Let's Get Started!

• First topic: radiation

- O How much does the Sun heat the Earth?
- O How does the Earth come into energy balance?
- O How does the greenhouse effect work?