GFD II: Balance Dynamics ATM S 542

DARGAN M. W. FRIERSON
UNIVERSITY OF WASHINGTON, DEPARTMENT
OF ATMOSPHERIC SCIENCES

LECTURE 1: 3/28/11

Atmospheric Motions

• Fluid motion on the sphere!

Water vapor global composite (U Wisc)

Class Summary

- Connecting GFD to the real atmosphere
- Looking for ways to interpret atmospheric circulations
 - Understanding of why different classes of motions occur

Instabilities

• Exponential growth of perturbations

Kelvin-Helmholtz Instability

Baroclinic Instability

Responsible for midlatitude weather patterns

"Cyclogenesis"

Cyclone Structure

- Center has lowest pressure winds are ~geostrophic
- Warm air moves poleward and upward
- Cold air moves equatorward and downward
- "Warm front" & "cold front"
- Clouds & precipitation
 - •~ "comma" shape.

Slide courtesy of Greg Hakim

Pacific Extratropical Cyclone

- •Intense vortex
 - •Cold air: shallow cellular convection
 - •Warm air: stratiform cloud
- •Sharp frontal boundaries

Zoom in on cold front...

Frontogenesis

Scale collapse at cold front: "rope cloud"---narrow line convection.

Slide courtesy of Greg Hakim

What is "balance dynamics" anyway?

- And why is it important?
- We'll illustrate this with some history:
 - o The first NWP experiment (Richardson, 1922)
 - The first successful NWP model (Charney, Fjortoft, & von Neumann, 1950)

All info on this topic is from Peter Lynch: Check out his book "The Emergence of NWP"!

Numerical Weather Prediction (NWP)

 Improvements in weather prediction over the last 60 years are among the most impressive accomplishments of society

Lewis Fry Richardson

- British mathematician, physicist, atmospheric scientist
- Scientific career very influenced by his Quaker beliefs (pacifism)
- Made the first numerical weather prediction in 1922

Also had a dream of the future of weather prediction...

The Forecast Factory

Filled with employees ("computers") doing calculations

Richardson's dream in 1922 of a global forecasting system

He estimated 64,000 "computers" (people) would be necessary to forecast over the globe

Richardson's Experiment

Richardson's Experiment

Data taken when Halley's Comet was passing through the atmosphere

Tabulated values from these charts by hand!

500 mbar heights and 500-400 mbar thickness

Richardson's Calculations

- Served as ambulance driver with the Friends' Ambulance Unit in France during WWI
 - Transported injured soldiers, often under heavy fire
- Took 1000 hours of work to perform the calculations
 - o "My office was a heap of hay in a cold rest billet"
- Calculation book was lost during the battle of Champagne
 - But recovered months later under a heap of coal
- Eventually published in 1922

Richardson's Spread-sheet

Computing Form P XIII. Divergence of horizontal momentum-per-area. Increase of pressure

The equation is typified by: $-\frac{\partial R_{\text{MSS}}}{\partial t} = \frac{\partial M_{\text{MSSS}}}{\partial c} + \frac{\partial M_{\text{MSSS}}}{\partial n} - M_{\text{MSSS}} \frac{\tan \phi}{a} + m_{\text{MSS}} - m_{\text{MSS}} + \frac{2}{a} M_{\text{MSSS}}. \text{ (See Ch. 4/2 \#5.)}$

• In the equation for the lowest stratum the corresponding term $-m_{os}$ does not appear

Ref.;—		Longitude $\delta e = 441$		Latitude 5400 km North $\delta n = 400 \times 10^{\circ}$			Instant 1910 May 20^4 7^h G.M.T. a^{-1} . $\tan \phi = 1.78 \times 10^{-9}$			Interval, $\delta t \ 6 \ hours$ $a = 6.36 \times 10^8$		
				previous 3 columns	previous column		Form P xvi	Form PxvI	equation above	previous column	previous column	previous column
λ	$\frac{\delta M_E}{\delta e}$	$\frac{\delta M_{S'}}{\delta n}$	$-\frac{M_N\tan\phi}{a}$	$\mathrm{div'}_{EN}M$	$-g\delta t\mathrm{div}'_{EN}M$		m_H	$\frac{2M_H}{a}$	$-\frac{\partial R}{\partial t}$	$+\frac{\partial R}{\partial t} \delta t$	$g \frac{\partial R}{\partial t} \delta t$	$\frac{\partial p}{\partial t} \delta t$
	10 ⁻⁵ ×	10⁻6×	10−5×	10 ⁻⁶ ×	100×	a g	10−6×	10⁻6×	10 ⁻⁵ ×		100×	100×
h _e	-61	-245	-6	-312	656	filled up after computed on	0					- 0
h,	-01	- 240	-6	-312	000		- 83		-229	49.5	483	100
-	367	- 257	2	112	- 236	to be fi	-00	0.06	- 136	29.4	287	483
h4 -	93	-303	-16	-226	478	has	165	0.11	- 124	26.8	262	770
h _e	32	- 55	-12	- 35	74	ent colui velocity	63	0.02				1032
h _a	02	- 00	-12	- 30		quer l ve	138	0.07	-110	23.8	233	1265
	-256	38	- 8	- 226	479	subse ertica P xvi	100	0.03	- 88	19.0	186	
	Note: div'_s, M is a contraction for				SUM =	Leave the subsequent of the vertical veloc Form P.vu						1451
$\frac{\delta M_x}{\delta e} + \frac{\delta M_x}{\delta n} - M_x \frac{\tan \phi}{a}$					$= \frac{\frac{1451}{\partial p_a}}{\frac{\partial t}{\partial t}} \delta t$	Leav						check by $\Sigma - g \delta t \operatorname{div}'_{ES}$

Richardson's Computing Form P_{XIII}

The figure in the bottom right corner is the forecast change in surface pressure: 145 mb in six hours!

UW Rooftop data variability

UW Rooftop Data for 20110322 to 20110325 @ 18:23:41 (UTC)

Extrapolating noisy rates of change

Tendency of a Noisy Signal

Unbalanced motions

which average to zero on top of a smoothly changing signal can really mess up forecasts!

Balancing initial conditions is still a problem today! (big problem in data assimilation)

Richardson's forecast

Forecast without Filtering

Short-range forecast of sea-level pressure, from *uninitialized data*. The contour interval is 4 hPa. Single forward time step of size $\Delta t = 3600 \, \text{s}$.

Richardson's Forecast

- Richardson himself realized that gravity waves ("imbalanced initial conditions") were the problem
- He suggested smoothing of initial conditions
 - And proposed 5 different methods for this
- Unfortunately he couldn't implement them due to computational expense
 - But we can reproduce the results using today's computers...

"Balancing" the initial conditions

Forecast with Filtering

Short-range forecast of sea-level pressure, from *filtered data*. The contour interval is 4 hPa. Single forward time step of size $\Delta t = 3600 \, \text{s}$.

The First Successful NWP Experiment

- Fast gravity waves were the problem:
 - Why not try predicting with a model that has no gravity waves?
- John von Neumann, Jule Charney, Ragnar Fjortoft
- Research proposal proposed three uses for NWP:
 - Weather prediction (duh)
 - Planning where to take observations
 - Weather modification!

The First Computer!

• ENIAC: The Electronic Numerical Integrator and Computer

The First Computer!

• ENIAC: The Electronic Numerical Integrator and Computer

