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GFD1 AS509/OC512     Winter Q. 2017  
notes on lab 1     Tues 10 Jan  12.30 
P.B.Rhines 
 
Some useful ideas from thermodynamics. 
 
 GFD-1 emphasizes the physical dynamics of density-stratified fluids on the rotating Earth,  and 
is basic to the understanding of atmospheric and oceanic circulation, waves and instabilities.   Energy 
is supplied to the system principally by solar radiation, but also by a weak geothermal heating and by 
tidal forcing.     Thermodynamics thus plays a central role, across the whole range of length scale of 
these circulations.   Mechanical energy is dissipated (converted to heat, usually) by very small-scale 
velocity gradients, which we saw in Fall Q. labs, where the kinetic energy in a stirred bathtub 
disappeared after a few tens of seconds (after about 1 rotation of the most energetic, large eddies).  
This was vastly faster dissipation than the time (days to weeks) for simple viscous diffusion to destroy 
the large eddies directly. 
 
     Some basic thermodynamics: what is temperature?   The 1st law of thermodynamics is the key 
energy equation for thermal energy.   We want to discuss what we mean by  the temperature, T.   Too 
often, textbooks introduce temperature without defining it.  This is likely because the science of 
thermodynamics was developed before atoms and molecules were identified.   The equation of state, 
     p = ρRT  
where p is pressure (Newton m-2),  ρ is density (kg m-3-) and T is temperature (in Kelvin degrees 
written K (not 0K),   K = 0C + 273.15).   R is the gas constant, discussed below.  
 
    The equation of state can be derived from classic kinetic-molecular theory by equating the 
momentum flux carried by the molecules to the pressure. One way to do this is for molecules 
bouncing elastically off a plane boundary, equating the change in their momentum to the (time-
integrated) normal force they exert on the boundary.  An equivalent way, avoiding questions of the 
elastic reflection of the molecules, is to find the flux of momentum past a fixed control plane in the 
midst of the fluid, say at position x=0, without any rigid boundary.  As with any substance, the flux of 
something is the density of the substance (amount per m3 ) times the velocity normal to the control 
plane.   If x-component of velocity is u1 , the density of x-momentum is ρ u1 and the flux of x-
momentum in the x-direction (per m2 of the surface) is   
                       ρ u12        ( kg m-1/sec2) . 
Molecules are whizzing in both directions, the ones with positive u1 carry their momentum to the right 
and the ones with negative u1 carry negative momentum to the left;  both contribute to an increase in 
x-momentum to the right of x = 0  and an increase in negative x-momentum to the left.  Equilibrium 
can be established by putting the gas in a box with reflecting walls.     
 
    We call this momentum flux per unit area the pressure, p (newton m-2 ≡ kg m-1 sec-2….just use F = 
MA to check units),  a momentum flux per unit area across the plane x=0.  It is also the force per unit 
area exerted normal to a solid boundary (one which does not heat or cool the gas, but merely reflects 
molecules).  But, somewhat mysteriously, momentum flux is also equal to twice the kinetic energy 
density contributed by the x-velocity,  KE1 = ½ρ u12 .  This is related to the situation in Bernoulli’s 
equation, which is derived as an integral of the momentum equation along a streamline, but becomes 
an energy equation.         
 
   We are almost there.   First notice that molecules have velocity in all 3 directions, so the total kinetic 
energy density (per unit volume) is KE = 3KE1 and thus 
    p = 2 KE1 = 2/3 KE       (Joules m-3   = kg m-1 sec-2 ).    
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Now define the temperature as a constant times the kinetic energy per kg. of gas, KE/ρ  (Joules kg-1) : 
    T = 2/3 KE/ρR   => p = ρRT                        (§) 
Thus temperature is defined as  (2/3R) times the molecular kinetic energy per kg of gas, KE/ρ. Since 
R varies for different species of gas,  we show below that temperature T is also a constant times the 
kinetic energy of a single gas molecule. 
   
The value of R depends on the gas in question but relates simply to a universal constant  
    R* = 8314.36   (J kmole-1 K-1 ),     
through   R = R*/ma  
where ma is the mass in grams of one mole of gas (that’s 6.02 x 1023 molecules, Avogadro’s number) 
while m is the mass of single molecule.  For air, dominantly nitrogen (78% by mass) and oxygen 
(21%),  ma  averages to  28.97 (g mole-1 )  and so R = 8314.36/28.97 = 287.04  (J. kg-1 K-1 )   (Gill, 
p.40).   Recall that one mole of gas would occupy 22.4 liters of volume at standard temperature and 
pressure (00 C,  1 atmosphere pressure).   
 
 The temperature, therefore, is proportional to the mean kinetic energy per kg of gas: thermal 
energy is microscopic, molecular, mechanical KE.    This gives us an immediate way of knowing how 
fast these molecules travel.  Inverting the result above, the root-mean-square speed (averaging 
indicated by brackets < >) is  
     <|u|2>1/2  =  (3RT)1/2            (or, = (3R*T/ma)1/2  ).              (*) 
which for air at room temperature (T = 300K) is a speed of 508 m sec-1 .  This is particularly 
interesting, because it is barely faster than the speed of sound in air ( 347 m sec-1 at 300K).  Anyway 
it’s a view of the molecular world obtained by rather simple arguments and measurement of pressure 
and air density alone.    
 
 Different species of air have different molecular speeds.  While this molecular speed is an 
often cited result of classical ideal gas theory, it ignores the differences among the various molecular 
species making up the gas.  In a gas like air made of several molecular species, an additional result of 
statistical mechanics is that the frequent elastic collisions of molecules with one another cause the 
kinetic energy per molecule to be the same for each species….equipartition of energy.  This means that 
the lighter molecules are moving faster; in some cases much faster: from eqn. (*) the ratio of mean 
speeds varies as  (ratio of masses)-1/2 ; think of billiard balls colliding with bowling balls. Thus the 
mean speed of helium atoms, with atomic mass 4 g mole-1 in the atmosphere, at room temperature, is 
about 1370 m sec-1.  In fact some light molecules in the atmosphere escape the Earth’s gravity field.     
These are not the ‘average’ molecules, but the fastest ones at the tail of the Gaussian distribution of 
molecular velocity, exceeding 1o km sec-1 . Hydrogen and helium tend to escape, whereas on Jupiter’s 
atmosphere, with its stronger gravity field, these species are abundant.     Very high in the atmosphere 
(above about 200 km) the composition of air becomes dominated by light molecules or atoms. 
 
    Most texts on the subject write this result in terms of Boltzmann’s constant, kB  = 1.38 x 10-23 (Joules 
per molecule per degree K), whereupon the kinetic energy of a single molecule (in a simple gas with 
just one species) is 
    KEsingle molecule = 3/2 kB T           (J. per molecule) 
The connection with our derivation above is through  
          R = kB/m  
where m is the mass of a single molecule,  so that 
                                                 KEsingle molecule = 3/2 m R T        (J. per molecule) 
which converts to  
    KEper cubic meter = 3/2 ρ R T  =     3/2 p     (J.  m-3 ) 



 3 

as derived above  (§) ; we used here the number of molecules per cubic meter,   ρ/m.   Notice how the 
small number kB is sort of the inverse of Avogadro’s  big number, with both allowing us to convert 
from single-molecule energy to the more useful energy of one mole of gas.   
               
        
      Specific heat capacity.  Molecules with two or more atoms have additional ways to store energy, 
beyond their KE of translation.   The kinetic energy of such molecules is still responsible for pressure 
and hence temperature, but there are additional ways to store energy:  rotation of a diatomic molecule 
like nitrogen, and possibly elastic vibration of the two atoms.   The total stored energy of the molecule 
is the sum of the 3 components of KE (3 velocity components), plus 2 components due to rotation 
about two axes normal to the line joining the atoms (not 3, since rotation about the line joining the 
atoms contributes negligible energy).   This means that different gases require different amounts of 
heating to raise their temperatures by 1 degree.  Monatomic gases (like the noble gases, argon, 
helium….) have just the 3 components of KE, whereas diatomic gases like nitrogen and oxygen have 5  
ways to store energy. However at very high temperature elastic vibrations of the two atoms are 
excited, giving two more degrees of freedom to diatomic molecules for a total of 7 degrees of freedom.   
These are classical-physics ideas and quantum mechanical structure of molecules with their orbital 
electrons yields more complexity.    
 
    The 1st law of thermodynamics   
    δE = δ’Q – p δv        (……..= δ’Q + (p/ρ2 ) δρ) 
gives the relation between an increment of heating, say δ’Q, and internal energy change, say  δE. v is 
specific  volume, v = 1/ρ. If  the volume is held constant, δE = δ’Q  and for molecules with a fixed 
number of degrees of freedom 
     E = Cv T   (J  kg-1) 
where Cv = δ’Q/δT is the ‘specific heat capacity at constant volume, v, and T is Kelvin temperature.  
For a monatomic gas CV = (3/2)R;  for a diatomic gas there are two more degrees of freedom, and 
    CV = (5/2)R  
unless hot enough to awaken vibrational degrees of freedom.    
 
     If instead the atmosphere is allowed to expand upward as it is heated, keeping the hydrostatic 
pressure constant at each parcel of fluid, the specific heat is CP =  δ’Q/δT at constant pressure.   From 
the 1st law we find   
    CP – CV = R,  
 so that for air (diatomic)    CP = (7/2)R.    
 
     Internal thermal energy and mechanical potential energy.    The heated column of atmosphere 
expands upward, raising its center of mass in the vertical, z direction, and hence increasing the 
gravitational potential energy, PE, of the air: PE = g x mass of air x center of mass, ∫gρz dz.  This 
sharing of energy means that more heating is needed to raise the temperature by 1 degree.  Without 
any further calculation, we find that the heat energy converted to PE is the ‘left over’ (CP – CV) δΤ  and 
the  ratio of mechanical, potential energy produced to internal, thermal energy increase CV δT  is                

     (CP −CV )δT
CV δT

= γ −1 γ = CP

CV

     

The ratio of specific heats γ = CP/Cv  = 7/5 for diatomic gas.  In this case heating the atmosphere 
produces gravitational PE  which is fully 40% of the increase in thermal internal energy.  This PE can 
convert to the KE of the circulation.   
 
   An equivalent calculation for the ocean shows very much smaller fraction of solar heating going into 
PE, because the thermal expansion coefficient of seawater is so much smaller than that of air.  The 
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thermal expansion coefficient, α = 1
ρ
∂ρ
∂T

 (K-1) at constant pressure is just 1/T for air ~ 1/300 at room 

temperature. Whereas, for warm seawater α ≈ 2x10−4 (K −1)which is 0.06 times that of air. 
 
     Climate system.  This tells us something useful about the coupled ocean/atmosphere system:  the 
atmosphere readily converts solar heating (and heating from the oceans beneath) into mechanical 
energy of circulation, while the ocean is more sluggish.   As well as the small thermal expansion of 
water, the ocean circulation is inhibited by the heating and cooling at its upper surface.  It is far more 
efficient to heat a fluid from below or internally, as the atmosphere is.  (Recall that the efficient heat 
engine involves heating the gas at high pressure, cooling it at low pressure.) 
 
     Winds in the atmosphere drive ocean circulation independent of that due to  thermal forcing.   
There is in fact a proof (about 2 or 3 lines long) by Paperella and Young (J. Fluid Mech. 2002) 
showing that heating and cooling at the top of the ocean will, by itself, drive only negligibly small 
circulation at large scale, unless another source of energy is also present (winds or tides).  
 
     Gill’s textbook has good introductory chapters with some general properties of oceans and 
atmosphere.  First,  the phase change of water is a key part of the energy balance of the atmosphere, 
through the transport of latent heat in water vapor.  It takes about 2.5 million Joules of heating to 
evaporate one kg. of water at T = 20 0C.   The oceans evaporate on average about one meter per year 
of water (of course more in hot, dry regions), and yet the average amount of water in the whole 
atmosphere above would amount to only ~ 2 cm. of liquid water, if condensed.  The residence time of 
water in the atmosphere is rather short, but south winds do carry water vapor to high latitude where it 
gives up its heat as it precipitates.  Locally in the tropics there is also significant recycling of water and 
latent heat release in towering cumulus clouds and tropical cyclones.  Fully ½ of the meridional 
transport of heat by the atmosphere from tropics to polar regions is in the form of latent heat 
transport (water vapor), rather than just in warm winds (‘sensible heat transport’).  The ocean returns 
this water vapor equatorward, and its overturning circulation transports heat at a rate a bit less than 
the atmosphere, yet still very significant.  
 
    Convection and heat engines.   We want to relate the complex process of thermal convection to a 
simpler mechanical model, an engine that converts heat into mechanical energy (KE or PE).  The 
Stirling engine shown in the lab is an example.  It works by heating a trapped volume of air, which 
expands.  The air is in a glass tube that can rock back and forth like a see-saw, and is forced to do so 
by the motion of the row of yellow marbles.  Part of the expanded air flows through a plastic tube 
which then exerts an upward force on the right end of the ‘see-saw’.  It tips down at the left; this 
moves the row of yellow marbles over to the site of the heating.  The air is displaced by this, far from 
the heat source  where it cools.  The cooled air contracts and, communicated through that same 
plastic tube, allows the see-saw to rock back up at the left end, the marbles move to the right, and the 
air is once again close to the heat source.   A short video from our GFD lab shows the thermal engine 
at work: www.ocean.washington.edu/research/gfd/stirling.m4v 
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It’s very difficult to write about this clearly, so perhaps imagine a simple column of air with a 
moveable lid on top, upon which there is a red weight.    Heat the air, allowing it to expand at constant 
pressure, lifting the lid. We can then remove the weight onto a high shelf, and we have done 
mechanical work, stored as PE of the weight.  Relieved of its weight, the lid rises a bit farther, 
adiabatically (no heating or cooling).  Now cool the air column back down, so that it shrinks 
downward.   Finally place another weight on the lid.  The air column compresses further, 
adiabatically.   Once again apply heat at constant volume, allow the gas to expand lifting the mass, 
slide it onto the shelf, etc.  This is a cyclic heat engine which appears on a plot of pressure P against 
volume V   (V is proportional to 1/ρ).     
 
 

 
 
 
 
 
      
  
 
 
If the air cycles round the P-V plane clockwise, it does this work.  The key is to heat the air at high 
pressure, let it expand, and cool it at low pressure.   The amount of mechanical energy produced ( the 
‘work done’) is  

 
P dV!∫ , calculated following the curve round one cycle.  This is the area (cross-

hatched in the figure) enclosed by the closed curve.  With P being force/A and V being distance times 
A, the integral becomes the integral of force times distance, which is the basic expression for work 
done, or mechanical energy created.  The most efficient heat engine uses the Carnot Cycle, shown in 
the figure, where heating at high pressure (A => B) occurs at constant temperature while expansion 
(B=>C) an compression (D=>A) are adiabatic…no heat input.  The net mechanical energy produced 
by this cycle is a fraction  1 – TC/TA     of the heat flow entering the system.  This provides an ideal limit 
for the efficiency of convection in converting heating into fluid circulation (think of the two 
temperatures as the cold and hot extremes experienced by a fluid parcel).  The righthand figure shows 
this schematically, with heat flowing from a hot boundary (T2) to a cold boundary (T1) with some of 
the heat flow diverted into W, the work or mechanical energy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

heat                    lift weight           slide weight           cool         add new weight and repeat 
                                                            onto shelf 
                                                        isobaric expansion       adiabatic expansion   isobaric compression  adiabatic compression 
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How does the P-V diagram for the example of a heated vertical air column with weight on its lid differ 
from this Carnot cycle?   How would the mechanical energy production of these heat engines change if 
the working gas were helium instead of air?    
 
   The Stirling engine shares a property with most heat engines: it is a see-saw oscillator that is forced 
into motion by a weak buoyancy force.  Car engines have flywheels, which serve the same purpose: 
their angular momentum helps to smooth out the impacts of exploding gasoline.     
 
     These ideas can be applied to air parcels (or water parcels) experiencing thermal convection.  We 
looked briefly at convection with a thin cell of water heated from below.  Two circulation cells 
developed with upward flow in the middle (image below).  The life cycle of the experiment, from a 
cold start, is as follows.   When the heat is switched on, it diffuses upward from the bottom glass 
boundary.  The temperature obeys the diffusion equation, and hence warming reaches a distance  
d ~ (κ t)1/2 above the boundary where t is the time and κ is the thermal diffusivity (m2 sec-1).   Initially 
there is no fluid motion, just heat diffusion.  An estimate of the buoyancy force divided by the viscous 
force comes from scale analysis of the heat equation (with fluid advection included).  It is the Rayleigh 
number, 

          Ra = g δρ d
3

κν
  

where g is the gravity acceleration,  δρ  is the density difference over a vertical distance d, κ is thermal 
diffusion coefficient and ν is kinematic viscosity (momentum diffusion coefficient).  You can see that 
the numerator is related to buoyancy force while the terms in the denominator express  viscous force 
and diffusive loss of buoyancy.  So when Ra is large enough for upward buoyancy to overcome friction 
and diffusive loss of buoyancy,  convection can occur (Ra has to exceed about 2000 to do so.)  The 
term d3 is there to make Ra dimensionless. But if we identify d with the diffusion distance (κ  t)1/2  we 
see that Ra will increase with time, and eventually buoyancy forces win out, and convection begins.  
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

heating pad below 

cooling at the surface 
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  Initially the convection cells will be very small plumes of width ~ d.  But rather quickly they coalesce 
into larger plumes, which have less diffusive damping.   Soon we are left with two big cells of 
overturning.  This cascade to large scale flow is relevant to cloud convection and to downward  
convection in the ocean, when its surface is cooled by the atmosphere.   The great planetary cells of 
meridional overturning in both atmosphere and ocean are, in a sense, the ultimate convection cells, 
though not without important mechanical forcing as well.  Fully developed convection has velocities 
forming a boundary layer at the bottom, where heat diffuses in from the bottom, and is swept away by 
the strong flow.  The sinking branch tends to keep the boundary layer thin.    
 
    Nature finds ways to increase the transports of interesting quantities in fluids.  Here, convection 
carries heat upward much more strongly than pure diffusion would, if there were no fluid motion. We 
can estimate the heat flux at the base as κ∂T/∂z  ~ κ ∆T/h  where h is the boundary layer thickness 
and ∆T  is the top-to-bottom temperature difference. Simple diffusion without circulation would have 
upward heat flux κ∆T/Η where H is the total height of the fluid.  Thus the ratio of heat flux by 
convection to that by simple heat diffusion without flow is simply H/h >> 1.  This amplification of 
heat flux by circulation is so useful that it has a name: the Nusselt number.    
 
     Phase change: steam engines.  Finally, we looked at a boat propelled by a steam engine, with no 
moving parts.  Evaporation of water absorbs a huge amount of heat, which is turned back into 
sensible heat where condensation back to liquid occurs.  2.25 x 106 Joules per kg.  of water evaporated 
(boiled), at 100 0C .  The changes in pressure and volume are very great, hence the work done.  The 
‘pop-pop’ boat has a chamber attached to 2 pipes that lead out into the water at the stern.  A candle 
beneath the chamber boils the water in it, which is thrust out one of the pipes, sucking new, cold 
water into the chamber through the other pipe.  The momentum of the outflow propels the boat 
forward. The image at the right is a homemade version with a coil of metal tubing above the candle, 
rather than a single chamber. 
 
 

 
 
 


