GFD I

DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES

FEB 17, 2017

Derived the shallow water equations

- Simple system with no vertical structure
 - Velocity independent of depth within the layer
- Three equations for *u*, *v*, *h*/*eta*
- o For reference, full SWEs are

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -g \frac{\partial h}{\partial x}$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -g \frac{\partial h}{\partial y}$$

$$\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} + \frac{\partial (hv)}{\partial y} = 0$$

- Waves in the SWEs:
 - Showed that "The Wave Equation" from applied math can be derived exactly from the SWEs
 - \times With c = sqrt(g H)
 - Wave speed is independent of scale:
 - ▼ All Fourier modes propagate at same speed
 - Not true for other waves we'll consider in the class!
- Still the subtlety of what goes east and what goes west...

• Waves in the SWEs:

- o "Modes": structures that exactly keep their shape
 - Velocity proportional to height in east-moving mode
 - Velocity opposite to height in west-moving mode
- Projection onto different modes determines what goes east & what goes west

Rotating shallow water waves

- Also called "Inertia-gravity waves"
 - ➤ Propagation characteristics are strongly a function of wavenumber (i.e., these waves are **dispersive**)
- First appearance of the famous "Rossby Radius of Deformation"
 - For length scale << Rossby radius, rotation is not felt</p>
 - Dispersion relation is same as for non-rotating waves
 - For length scale >> Rossby radius, rotation is dominant
 - These are "inertial oscillations" or "constant angular momentum oscillations"
 - Group velocity is zero in this case

Dispersion

• Dispersion is when phase velocity & group velocity

are different:

Next: Geostrophic Adjustment

• The "dambreak" problem

Dambreak Problem Steady State

Steady state height and v fields:

Geostrophic Adjustment: Summary

- Dambreak problem.
 - Goal: steady state *u*, *v*, *h* fields.
- Regular equations are degenerate (need extra constraint to solve).
- PV equation provides this: PV stays exactly the same at all points!
- Steady state solution:
 - \circ u' = 0.
 - *h'* = unchanged (far away compared to Rossby radius).
 - o h' ~ approx'ly linear (well inside a Rossby radius)
 - \circ v' = in geostrophic balance with h'
 - \circ v' = forms a jet in negative direction

Geostrophic Adjustment

- We calculated the steady state solution. What about the transient response?
- See Gill for full time-dependent solution.
- Let's examine qualitatively though.
- Adjustment is accomplished by inertia-gravity waves!
 - Short waves are essentially nonrotating
 - Long waves have slower group velocities and are more strongly influenced by Coriolis.

Transient Geostrophic Adjustment: Height Field

3. Transient profiles for (a) η , (b) u, and (c) v for adjustment under gravity of a fluid with an initial discontinuity in level of $2\eta_0$ at x=0. The solution is shown in the region x>0, where the surfapressed, at time intervals of $2f^{-1}$, where f is twice the rate of rotation of the system about a vertice on the x axis are at intervals of a Rossby radius, i.e., $(gH)^{1/2}/f$, where g is the acceleration due to

Height field at 4 consecutive times

(just the positive x-axis is plotted – the part that was initially negative).

Note the *front* and small scale behavior moves at the *gravity wave speed*.

Longer wavelength stuff follows along more slowly.

Transient Geostrophic Adjustment: *u* and *v* Fields

- Zonal winds at the same 4 times and locations as previous slide.
- Zonal winds become positive initially due to initial pressure grad force.
- Oscillations due to inertial oscillation-type behavior.
- Goes to zero eventually.
- Meridional winds at same 4 times.
- Note *no front* in this field.
- Jet forms immediately (responding to positive zonal wind anomalies).
- Positive meridional wind anomalies also occur due to inertial oscillationtype behavior.