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* Fluid motion on the sphere!

(SSEC: UW-MADISON)
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Water vapor global composite (U Wisc)




Class Summary
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[Lee Wave Wind Event

Waves

L

Lee

High resolution
MODIS water vapor
image taken ~4 hours

Radar site before radar failed.

Shows lee waves
downstream of the
‘ Sierra. Subsidence in
- these waves (yellow
and dark blue areas)
are commonly
associated with
extreme wind gusts.

Courtesy of NWS Reno

* Dec 19, 2008 in western Nevada

» High winds (140 mph (63 m/s) gusts)

« Damaged the Reno/Virginia Peak NWS
radar

Photos
Photos taken by NWS Reno

electronics team, on first visit to radar
after dome failure (19 Dec.).

FANNIAR



TOPEX/Poseidon

DEC 1 1996

* Kelvin waves in the ocean leading to the development of ‘97-98 El Nino event
» These waves were excited by Madden-Julian Oscillation events in the
atmosphere (which are related to atmospheric Kelvin waves!)



Exponential growth of perturbations

Kelvin-Helmholtz Instability



Baroclinic Instability
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» Responsible for midlatitude weather patterns

* “Cyclogenesis”
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Slide courtesy of Greg Hakim
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Cyclone Structure

-Clouds
and
Precipitation

Cold Air

r Cumulus Stratus
~~  Clouds Clouds

—
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« Center has lowest pressure
~geostrophic winds.

« Warm air moves poleward
and upward.
Warm front.

» Cold air moves equatorward

and downward.
Cold front.

» Clouds & precipitation.

~ “comma” shape.

Slide courtesy of Greg Hakim



0 Pacific Extratropical

-~

S Cyclone

«Intense vortex
«Cold air: shallow cellular
convection
Warm air: stratiform cloud
«Sharp frontal boundaries
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Zoom in on cold front...

Slide courtesy of Greg Hakim




Frontogenesis

Scale collapse at cold front: “rope cloud”---narrow line convection.

Slide courtesy of Greg Hakim



Why study “balanced models” like QG?

» We'll illustrate this with some history:
The first NWP experiment (Richardson, 1922)

The first successful NWP model (Charney, Fjortoft, & von
Neumann, 1950)

All info on this topic is from Peter Lynch: Check out his book “The Emergence of NWP”!



Numerical Weather Prediction (NWP)
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» Improvements in weather prediction over the last 60
years are among the most impressive
accomplishments of society

Anomaly correlation of 500hPa height forecasts

Southern hemisphere Northern Hem. 3 day forecast
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Northern hemisphere
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Southern Hem. 3 day forecast
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Lewis Fry Richardson

» British mathematician, physicist,
atmospheric scientist

» Scientific career very influenced
by his Quaker beliefs (pacifism)

» Made the first numerical weather = g
prediction in 1922

Also had a dream of the future of
weather prediction...




The Forecast Factory
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» Filled with employees (“computers”) doing calculations

Richardson’s dream in
1922 of a global
forecasting system

He estimated 64,000
“computers” (people)
would be necessary to
forecast over the globe




Richardson’s Experiment
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Richardson’s Experiment
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Data taken when
Halley’s Comet
was passing
through the
atmosphere

Tabulated values

from these charts
by hand!
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» Served as ambulance driver with the Friends’ Ambulance
Unit in France during WWI

Transported injured soldiers, often under heavy fire

» Took six weeks to perform the calculations
“My office was a heap of hay in a cold rest billet”

Peter Lynch thinks he meant 6 weeks*7 days*24 hours = 1000 hours
of computation!

I.e., it took him the whole time he was in France, 2 years

 Calculation book was lost during the battle of Calculation
book was lost during the battle of Champagne

But recovered months later under a heap of coal

» Eventually published in 1922



Goal: calculate the surface pressure tendency at
one point (in Bavaria), 6 hours in the future

& Copénhagen
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Discretized into five layers in the vertical

Used primitive equations
Assuming hydrostatic balance

Used finite differences to
calculate changes in
momentum, temperature,
and pressure
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Richardson's Spread-sheet

CompuriNg Form P xir.  Divergence of horizontal momentum-per-area. Increase of pressure
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The equation is typified by : — = - R

My — M yy® +3.l!". (See Ch. 4/245.)
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The figure in the bottom right corner is the forecast
change in surface pressure: 145 mb in six hours!



Why such a failure?

Not due to bad numerics, as many claim

He only took one time step, so numerical instabilities can’t
develop

Rather it has to do with unbalanced motions



Extrapolating noisy rates of change

Tendency of a Noisy Signal

PRESSURE varsus TIME

= Signal
SignakNois=

=== Physical Tendsncy

= Numerical Tendsncy

Unbalanced motions
which average to zero
on top of a smoothly
changing signal can
really mess up forecasts!

Balancing initial
conditions is still a
problem today!

(big problem in data
assimilation)

A simple schematic illustrating how extrapolating a noisy signal is dangerous...



Forecast without Filtering

Pressure 20 May 1910 7Z + O1 Sea Level
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Richardson’s forecast
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Short-range forecast of sea-level pressure, from uninitialized data. The

contour interval is 4 hPa. Single forward time step of size At = 3600s.




Richardson himself realized that gravity waves
(“imbalanced initial conditions”) were the problem

He suggested smoothing of initial conditions
And proposed 5 different methods for this

Unfortunately he couldn’t implement them due to
computational expense
But we can reproduce the results using today’s computers...



“Balancing” the initial conditions

Forecast with Filtering

Pressure 20 May 1910 77 + Ol ___Sea_level
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Short-range forecast of sea-level pressure, from filtered data. The con-
tour interval is 4 hPa. Single forward time step of size At = 3600s.




» Fast gravity waves were the problem:
Why not try predicting with a model that has no gravity waves?

» John von Neumann, Jule Charney, Ragnar Fjortoft

» Research proposal proposed three uses for NWP:
Weather prediction (duh)
Planning where to take observations
Weather modification!



ENIAC Forecast Grid
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Fic. 2. Computation grid used for the ENIAC forecasts. One line is
omitted from the southern edge and two lines from the remaining
edges (from CFvN).




The First Computer!

» ENIAC: The Electronic Numerical Integrator and
Computer




The First Computer!

» ENIAC: The Electronic Numerical Integrator and
Computer

.........
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Fig. 2. Forecast of January §, 1949, ojco GMT: (a) observed z and 5 at ¢t = o; (b) obsrved z and 5
at t = 24 hours: (¢) observed (comtinuous lines) and computed (broken lines) 24-hour height change; (d)
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Observed
height 24
hrs later

Forecast
height 24
hrs later

computed = and x5 at t = 24 hours. The height unit is 100 ft and the unit of vorticity is 1/3 x 104 sec™™.
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Third Forecast

Fig. 4. Forecast of January 31, 1949, 0300 GMT. (See Fig. 2 for explanation of diagrams)

Observed
height 24
hrs later

Forecast
height 24
hrs later




Fourth Forecast

Initial
conditions
3 b
Observed and
computed S ST N
changein YR ) =
height k) .T ' e

Results are not
that impressive
for first

“successful” NWP | /-

. -
-— .

forecast!

Fig. $. Forecast of February 13, 1949, 0300 GMT. (See Fig. 2 for explanation of diagrams.)

Observed

4 """""" height 24

hrs later

Forecast

"l W¢f height 24

hrs later




NWP really took off though & quickly improved!

December 1954: Royal Swedish Air Force Weather
Service in Stockholm

Model developed at the Institute of Meteorology at the
University of Stockholm (Rossby, etc)

Barotropic model, 3 forecasts per week of North Atlantic

May 1955: Joint Numerical Weather Prediction Unit,
Maryland
3 level QG model

1966: US uses 3-level primitive equation model
Global coverage since 1973



