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Abstract

The Global Precipitation Measurement (GPM) core observatory satellite launched in 2014 features more extend
ed latitudinal coverage (65°S – 65°N) than its predecessor Tropical Rainfall Measuring Mission (TRMM, 35°S –  
35°N). The Ku-band radar onboard the GPM is known to be capable of characterizing the 3D structure of deep 
convection globally. In this study, the GPM’s capability for detecting mesoscale convective systems (MCSs) is 
evaluated. Extreme convective echoes seen by GPM are compared against an MCS database that tracks convec-
tive entities over the contiguous US. The tracking is based on a geostationary satellite and ground-based Next 
Generation Radar (NEXRAD) network data obtained during the 2014 – 2016 warm seasons. Results indicate that 
more than 70 % of the GPM-detected deep–wide convective core (DWC) and wide convective core (WCC) ob-
jects are part of NEXRAD identified MCSs, indicating that GPM-classified DWCs and WCCs correlate well with 
typical MCSs containing large convective features. By applying this method to the rest of the world, a global 
view of MCS distribution is obtained. This work reveals GPM’s potential in MCS detection at the global scale, 
particularly over remote regions without a dense observation network.
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1.  Introduction

As a collaborative effort between the National 
Aeronautics and Space Administration (NASA) and 
the Japan Aerospace Exploration Agency (JAXA), 
the Tropical Rainfall Measuring Mission (TRMM) 
satellite was equipped with a Ku-band (13.8 GHz) 
quantitative precipitation radar, together with a variety 
of sensors including passive microwave, visible, in-
frared, and lightning (Kummerow et al. 1998; Schum-
acher et al. 2004; Zipser et al. 2006; Houze et al. 
2015). Launched in 2014 as the successor of TRMM, 
the Global Precipitation Measurement (GPM) core 
observatory satellite carries the first spaceborne dual- 
frequency precipitation radar (DPR) operating at 
both Ku (13.6 GHz) and Ka (35.5 GHz) bands. Com-
pared to TRMM, the DPR system helps improve the 
accuracy of precipitation measurement and upgrade 
the detectability of weak rain as low as 0.5 mm hr−1. 
Another key advancement of GPM is its extended 
coverage to higher latitudes (65°S to 65°N, compared 
to 35°S to 35°N for TRMM), providing a near-global 
view of 3D cloud and precipitation structure every 
2 – 3 hours.

Mesoscale convective systems (MCSs) are of great 
importance because of their large area (at least 100 
km in one direction) and intense, long-lasting (up to 
24 hours) precipitation (Houze 2004, 2018). In mid-
latitudes, MCSs strongly affect local climate through 
their precipitation, severe weather, and redistribution 
of heat and moisture, which further influence the 
regional to global hydrological cycle and large-scale 
circulations (Houze et al. 1990; Feng et al. 2016, 2018; 
Futyan and Del Genio 2007). Based on the detailed 
3D radar reflectivity field observed by spaceborne pre-
cipitation radar, Houze et al. (2007, 2015) developed 
a convective echo classification algorithm based on 
the horizontal and vertical dimensions of echoes of a 
given intensity. The most intense of such 3D convec-
tive echo objects are assumed to be strongly associ-
ated with MCSs (Houze et al. 2015, 2019). However, 
direct comparison to other independent MCS data sets 
is needed to support this argument. Identification of 
MCSs has been traditionally carried out by tracking 
convective elements in geosynchronous satellite or 

ground-based radar data, which provide temporally 
continuous spatial data. For example, satellite imagery 
that provides cloud radiative properties such as bright-
ness temperature at high temporal resolution has been 
used to track deep convective clouds at a regional 
to global scale (Schmetz et al. 1993; Machado et al. 
1998; Morel and Senesi 2002; Héas and Mémin 2008; 
Roca et al. 2014). However, the incapacity of visible 
and infrared satellite data to reveal the structure of 
the clouds in the lower troposphere leaves large un-
certainties in satellite-based MCS tracking. Ground-
based radar measurements provide a 3D structure of 
precipitating deep convection that can complement 
satellite imagery to detect MCSs more accurately. 
A recently developed tracking algorithm called 
FLEXible object TRacKeR (FLEXTRKR, Feng et al. 
2018) jointly uses the geostationary satellite bright-
ness temperature and NEXRAD 3D radar reflectivity 
structure to identify and track MCSs. A comprehen-
sive 13-year (2004 – 2016) MCS tracking database east 
of the Rocky Mountains has been developed using 
FLEXTRKR (Feng et al. 2019). This database is con-
sidered here to be ground-truth to evaluate the MCS 
objects detected by GPM. 

To determine GPM’s capability of MCS detection, 
we organized this study as follows. In Section 2, the 
data sets of GPM Ku-band reflectivity and NEXRAD 
observations, as well as their corresponding MCS de-
tecting/tracking algorithms, are introduced. In Section 
3, the quantitative comparison of 3D radar reflectivity 
fields is performed between the two data sets. This 
comparison is essential to determine whether the 
GPM and NEXRAD radar systems detect the 3D radar 
reflectivity fields consistently. After the consistency 
between the two data sets is established, the GPM’s 
snapshots of intense convective echo objects are com-
pared to the NEXRAD MCS tracking database over 
the Continental United States (CONUS) to quantify 
GPM’s MCS detection capability. Then, the regionally 
validated GPM’s MCS detection algorithm is applied 
elsewhere around the world, presenting a global view 
of MCS distribution. Finally, conclusions and discus-
sions are provided in Section 4.
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2.  Data and methodology

2.1  GPM Data and convective object classification
As a major component of the GPM DPR system, the 

onboard Ku-band precipitation radar features a swath 
width of 245 km. The horizontal resolution is 0.05° 
(approximately 5 km). The vertical resolution is 125 
m, provided in 176 levels. In this study, the GPM Ku-
band radar reflectivity data were downloaded from the 
University of Washington GPM-Ku Data Set located 
at http://gpm.atmos.washington.edu, which geolocates 
and interpolates the DPR Level 2A Ku-band version 
5B data (Iguchi et al. 2017) from radar coordinates to 
a Cartesian grid with the aforementioned resolutions. 
Detailed methodology regarding the geolocation cor-
rection and interpolation can be found in a study by 
Houze et al. (2007). 

NASA and JAXA divide the GPM Ku-band radar 
echoes into convective, stratiform, and other cate-
gories. In this study, the echo-object classification 
scheme developed by Houze et al. (2007, 2015) is 
applied to the convective echoes. The analysis for 
evaluating GPM 3D radar reflectivity and GPM’s 
MCS detection capability is conducted in the CONUS 
region for the warm seasons (April–September) 
of 2014 – 2016. The classification scheme defines 
convective echoes as deep, wide, or deep and wide 
depending on radar reflectivity intensity thresholds 
and criteria for convective echo object height and 
area. Both strong and moderate criteria (as defined 
by Houze et al. (2015)) are used in this study to 
examine the sensitivity of the results to the criteria. 
Strong (moderate) deep convective core (DCC) 
objects contain echoes that are greater than or equal 
to 40 dBZ (30 dBZ) (everywhere in the column) in 
intensity and have a maximum altitude of at least 10 
km (8 km). Strong (moderate) wide convective core 
(WCC) objects contain echoes that are greater than 
or equal to 40 dBZ (30 dBZ) and have a maximum 
horizontal extent of at least 1,000 km2 (800 km2). 
The category of DCC has no areal coverage criterion 
and is believed to be associated with young, vigorous 
convection. The WCCs have no height criterion but 
rather correspond to where the intense convection has 
organized horizontally upscale into mesoscale areas 
of active, widespread convection. Although the two 
categories are classified independently, they do have 
an overlap. Deep and wide convective core (DWC) 
objects meet the criteria for both DCCs and WCCs. 
The wide categories, DWC and WCC, are thought 
to be strongly related to the MCSs, as a typical MCS 
contains a large intense precipitation area with a major 

axis longer than ~ 100 km, which is similar to the 
coverage criteria for the DWC and WCC echo objects.

2.2  NEXRAD data and the MCS database
Densely distributed across the entire United States, 

the NEXRAD network consists of 159 high-resolution 
S-band Doppler radars (WSR-88D) operated by the 
National Weather Service. This study uses the mosaic 
NEXRAD data set named the Gridded Radar data 
(GridRad, Bowman and Homeyer 2017) that com-
bined all NEXRAD radar data covering the region 
155 – 69°W, 25 – 49°N. The GridRad data set has 2 km 
horizontal and 1 hour temporal resolutions, and a fixed 
1 km vertical resolution (24 levels). 

The 13-year MCS database (2004 – 2016) developed 
by Feng et al. (2019) uses both geostationary satellite 
infrared brightness temperature (Tb) and GridRad 
radar data to identify and track MCSs east of the 
Rocky Mountains (110 – 70°W, 25 – 49°N). The native 
GridRad radar data were regridded to a 4 km reso-
lution to match the geostationary satellite data. Feng 
et al. (2019) defined an MCS when a convective cloud 
system satisfies both criteria in size (cold cloud system 
with Tb < 241 K, area > 6 × 104 km2, and the radar- 
observed precipitation feature major axis length > 100 
km, with embedded convective core > 45 dBZ) and 
duration (persistence longer than 6 hours). The iden-
tification of a convective core is based on the storm 
labeling in three dimensions (SL3D) classification 
(Starzec et al. 2017). In SL3D, the convective core is 
labeled if any of the following criteria is satisfied: (1) 
25 dBZ echo-top height ≥ 10 km, (2) echo peakedness 
≥ 50 % of the echo column between the surface and 
9 km, and (3) 45 dBZ echo-top height is above the 
melting-layer height. In the MCS database (Feng 
et al. 2019), the melting-layer height is determined 
using the 6-hourly ERA-Interim reanalysis (Dee et al. 
2011). After an MCS is tracked, its life cycle is further 
separated into the initiation, genesis, mature, and dis-
sipation stages. Initiation starts at the first hour when 
the first MCS-related cold cloud system is detected, 
followed by the genesis stage when the major axis 
length of the convective core exceeds 100 km. As the 
convective core maintains its size, the upscale growth 
of the MCS’s stratiform rain area concludes the gen-
esis stage. Finally, when the convective core length 
falls below the 100 km threshold, or the stratiform 
rain area is lower than the mean value throughout the 
entire MCS life cycle, the system is classified as in the 
dissipation stage.

http://gpm.atmos.washington.edu
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2.3 � Matching the GPM data to the NEXRAD  
coordinate

The GPM Ku-band radar operates at a wavelength 
of 2.2 cm, which is capable of detecting large rain-
drops or snowflakes (Rauber and Nesbitt 2018), 
whereas the 3 GHz ground-based NEXRAD radar 
has a wavelength of 10 cm. The GPM Ku-band radar 
has a swath width of 245 km, which is equivalent 
to the range of a single NEXRAD radar (maximum 
operational range of 230 km, although better coverage 
and resolution is typically provided within a 150 km 
radius of the radar). The GPM radar scans downward, 
nearly vertically, and it has a vertical resolution ~ 100 
m, whereas the NEXRADs scan quasi-horizontally 
with a beamwidth of ~ 1 degree so that at a great hori-
zontal distance, the vertical resolution is coarse. More 
importantly, there is a temporal mismatch between 
the two data sets, as the GPM provides instantaneous 
snapshots of the 3D radar reflectivity field, whereas 
the GridRad temporally averages the observations 
from different individual NEXRAD radars within a 
9-minute window. The different wavelengths, scan-
ning geometries, and data processing methods of the 
GPM radar and NEXRAD require that care be taken 
in comparing data from the two systems.

Evaluation of the GPM Ku-band calibration and its 
attenuation correction has been performed throughout 
its pre-launch and post-launch stages in multiple 
field campaigns, such as the 2011 Mid-Continent 
Convective Clouds Experiment (MC3E, Wang et al. 
2015; Jensen et al. 2016), the 2012 GPM Cold- 
season Precipitation Experiment (GCPEx, Skofronick 
et al. 2015), the 2014 Integrated Precipitation and 
Hydrology Experiment (IPHEX, Grecu et al. 2018), 
and the 2015 – 2016 Olympic Mountain Experiment 
(OLYMPEX, Houze et al. 2017; McMurdie et al. 
2018; Zagrodnik et al. 2018). These field experiments 
have indicated that the GPM Ku-band radar data are 
consistent with the 10 cm wavelength ground-based 
radar measurements.

In comparing radar data sets from GPM and 
NEXRAD, differences can result from processing the 
data at different spatial resolution. It is, therefore, crit-
ical for us to quantitatively examine the consistency 
of the interpolated 3D radar reflectivity databases. The 
Earth System Modeling Framework package (https://
www.earthsystemcog.org/projects/esmpy/) has been 
used to bi-linearly re-interpolate the GPM 3D reflec-
tivity data (a spatial resolution of 0.05° and a vertical 
resolution of 125 m) to the GridRad coordinate (4 km 
horizontal and 1 km vertical resolutions). The hourly 
NEXRAD data are extracted at the GPM overpass  

locations and the nearest coincident hour. As described 
by Bowman and Homeyer (2017), the GridRad data 
are generated using the four-dimensional binning 
(averaging) algorithm that merges multiple individual 
radar volumes (the mean from 4-minute before to 
4-minute after the sample time). To make a fair com-
parison between the averaged GridRad reflectivity and 
the instantaneous GPM reflectivity measurements, 
we apply a Gaussian smoothing technique (Reinhard 
2006) vertically to the GPM data to mimic the binning 
procedure used in GridRad. Following a suggestion 
from Homeyer (2017, personal communication), a 
1 km running mean along the vertical direction and 
Gaussian smoothing with a kernel width of 9 and a 
sigma value of 2.5 are applied to the GPM reflectivity 
field. After the horizontal regridding and vertical 
smoothing, the two data sets have the same coordi-
nates. The smoothing procedure plays a significant 
role in matching the two observation data sets. If 
not smoothed, the raw GPM’s reflectivity values are 
systematically higher than the NEXRAD data by 
20 – 25 %.

Note that the minimum detectable reflectivity value 
of GPM Ku-band radar is between 12 dBZ (Hou et al. 
2014; Toyoshima et al. 2015; Hamada and Takayabu 
2016) and 13 dBZ (Olson et al. 2016). Through the 
examination of all available Ku-band radar data, it is 
extremely rare to find reflectivity lower than 13 dBZ 
(with occurrence frequency of 5 × 10−8). As a result, 
this study adopts the higher threshold of 13 dBZ, and 
the corresponding NEXRAD reflectivity is truncated 
accordingly for fair comparison.

As revealed in previous studies (e.g., Krajewski 
et al. 2006; Cui et al. 2016, 2017), NEXRAD radar 
beam blockage is a common issue over mountainous 
regions, making the radar reflectivity comparison with 
GPM difficult. However, the MCSs commonly initiate 
from the lee side of the Rocky Mountains (Feng et al. 
2019). Therefore, we choose the study domain east 
of the Rocky Mountains Front Range (eastern Colo-
rado). In addition, NEXRAD radars deployed along 
the coast have extended observations over the ocean. 
Those observations lack overlap with other radars, and 
their sample volume is larger than normal (Rinehart 
2001); thus, the data quality offshore is questionable. 
Moreover, from the perspective of MCS tracking, 
offshore convection farther away from the coastal 
NEXRADs is prone to larger uncertainty because of 
reduced low-level radar coverage. As a result, through 
the examination of CONUS elevation data (National 
Geophysical Data Center/NESDIS/NOAA/U.S. De
partment of Commerce 1995), the study domain is 

https://www.earthsystemcog.org/projects/esmpy/
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constrained to the central United States as illustrated 
in Fig. 1 (110 – 85°W, 31 – 48°N), to avoid most of the 
complex terrain over Rocky and Appalachian Moun-
tains and exclude all offshore areas.

3.  Results

3.1 � The comparison of 3D radar reflectivity between 
GPM and NEXRAD

Vertical echo structure is indicative of the kinemat-
ic, dynamic, and thermodynamic features of convec-
tive clouds (Hence and Houze 2008, 2011, 2012a, b), 
as well as cloud microphysical properties (Leary and 
Houze 1979; Cetrone and Houze 2011; Rowe and 
Houze 2014; Fan et al. 2015, 2017; Liu et al. 2015; 
Barnes and Houze 2016; Han et al. 2019). As men-
tioned in Section 2.3, the GPM data are instantaneous 
snapshots of the 3D radar reflectivity field from above, 
whereas the NEXRAD provides the mean composite 
data from multiple ground radars. This may result in 
a temporal mismatch between the two measurements, 
since we have binned the GPM overpasses to the 
nearest hour, i.e., the hourly NEXRAD data are com-
pared to the GPM overpasses that occur within the 
time window of ± 30 minutes for each hour. Previous 
studies (e.g., Feng et al. (2009) and Wang et al. (2016, 
2018)) have demonstrated that the time mismatch 
can significantly affect the reflectivity measurements 
between different radars, as convective features could 
change substantially in evolution and/or location on a 
time scale less than an hour. Therefore, we adopt the 
statistical method of contoured-frequency-by-altitude 
diagrams (CFADs) to compare the vertical distribution 
of radar reflectivity measurements from the two radar 
platforms.

As illustrated in Fig. 2, CFADs are generated for 
GPM (a, d, g, j, m, p) and NEXRAD (b, e, h, k, n, q) 

from all the collocated data for each month (April– 
September) within the sampling area for the 2014 –  
2016 period. The CFADs display the frequency dis-
tribution in a coordinate system of reflectivity bins 
(x-axis) and the altitude (y-axis) and represent the 
occurrence frequency of reflectivity spectra normal-
ized by the total number of bins in which reflectivity 
is recorded. The bin sizes in reflectivity and height 
are 1 dBZ and 1 km, respectively. The frequency is 
calculated as the number of non-zero echo values in 
a bin divided by the total number of bins containing 
reflectivity (all heights). The integral of the frequency 
over the entire 2D graph equals 1.

From the examination of the CFADs structure, the 
GPM is in good agreement with NEXRAD for each 
month regardless of the overall shape or magnitude 
of the frequency at various altitudes. Both data sets 
demonstrate consistent seasonal variations: the deep-
est echo top at various reflectivity thresholds increases 
from spring (April–May) to summer (June–August) 
and then decreases toward the early fall (September). 
This seasonality is also seen for the altitude change of 
the frequency contour of 0.6 % and higher. The peak 
altitudes of this higher frequency are broadly distrib-
uted below 6 km in spring, and the altitudes increase 
to 9 km in the summer and finally decrease to a lower 
altitude in early fall. The seasonal changes in echo-
top heights and the altitude of the higher frequency 
reflectivity values imply the seasonal variation of the 
convective intensity. The convective updraft intensity 
maximum in summer is consistent with the largest 
convective available potential energy being observed 
at that time (Xie et al. 2014). Meanwhile, the season-
ality in the altitude of higher frequency values also 
indicates the shift in storm types between seasons. 
Spring and fall storms tend to have more stratiform 
clouds with bottom–heavy reflectivity profiles (e.g., a 
strong bright-band signature near the melting level), 
resulting in higher reflectivity at mid-to-lower levels. 
During the summer, more occurrence of convective 
clouds shifts higher reflectivity values aloft.

The radar reflectivity distributions normalized at 
each level are also examined using the box–whisker 
plots illustrated in Figs. 2c, f, i, l, o, r. General agree-
ments are also found for the median, interquartile, and 
extreme values between the two data sets at different 
altitudes for every month. The differences are com-
monly less than 2 dBZ, except for the 95th percentiles 
above 12 km, where the NEXRAD exhibits larger 
reflectivity values than the GPM. From the CFADs, 
the frequencies of occurrence for these extreme values 
are very low; thus, the difference there is not of partic-

Fig. 1.  The domain for GPM and NEXRAD com-
parison is marked with the red box (110 – 85°W, 
31 – 48°N) overlaid on the CONUS elevation map.
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ular concern.

3.2  Evaluation of GPM’s capability in MCS detection
Having established that the GPM and the NEXRAD 

reflectivity fields are consistent on the interpolated 
grids, we now assess GPM’s capability in MCS 
detection. As mentioned in Section 2.1, it has been 
suggested that the GPM DWC and WCC echo objects 
correlate with MCSs, which feature convection orga-
nized on a larger horizontal scale. Here, we test this 
argument by comparing GPM DWC and WCC echo 
objects (strong criteria), which are observed as snap-
shots, to the MCS database, which is unambiguously 
determined from tracking convective features in time. 
Figure 3 is one example of a GPM-defined DWC 
echo object and the coincident MCS at the nearest 
hour from the NEXRAD data, as well as the timing 
of GPM’s overpass with the tracked MCS’s life cycle. 

By comparing Fig. 3a (GPM) and Fig. 3b (NEXRAD), 
the collocation of radar reflectivity fields as observed 
from the two platforms indicate that the fields are in 
as good agreement as could be expected. The GPM- 
defined DWC snapshot occurred during the time 
period that the MCS tracked by the FLEXTRKR algo-
rithm was in the genesis stage (Fig. 3c), meaning that 
it was experiencing upscale growth at the time of the 
GPM observation.

To form long-term statistics, all 158 DWC objects 
and 230 WCC objects detected by GPM (strong crite-
ria) within the three warm seasons are evaluated with 
the NEXRAD MCS database. By overlaying the mask 
of GPM-defined DWC or WCC object to the mask 
of the NEXRAD-tracked MCS cold cloud shield, 
we can determine whether the GPM DWC or WCC 
objects are part of a NEXRAD-defined MCS. If over-
lap is found, then this GPM-defined DWC or WCC 

Fig. 2.  The contoured-frequency-by-altitude-diagrams (CFADs) normalized by the total number of samples at all 
altitude levels for GPM (a, d, g, j, m, p) and NEXRAD (b, e, h, k, n, q) for the months from April to September in 
the 2014 – 2016 period. The box–whisker plots (c, f, i, l, o, r) for GPM (red) and NEXRAD (blue) are calculated 
using normalization at each individual level, where the center of the box represents the 50 % percentile value, the 
lower quartile (25 %) and the upper quartile (75 %) from the left and right boundary of the box, and whiskers cor-
respond to the 5 % and 95 % values.
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object is considered a HIT. Otherwise, it is treated as 
a false alarm (FAR) because the GPM snapshot of 
the convective echo objects does not align with any  
NEXRAD-tracked MCS. Note that we do not define a 
missing category (i.e., MCSs tracked by the NEXRAD 
but not identified by the GPM) because of the sub-
stantial difference in spatial coverage. As described 
in Section 2, the GPM has a limited swath width of 
245 km, where the NEXRAD network covers the 
entire CONUS. Therefore, the missing detection from 
the GPM is highly possible because there is no GPM 
overpass for a particular MCS.

In addition to the objective comparison, all the 
GPM DWC/WCC and collocated NEXRAD reflectiv-
ity images are manually screened for further confirma-
tion. For the GPM-detected echo objects in the FAR 
category, there are several cases in which the GPM 
detections are closely located (typically within 5 km) 
to the NEXRAD-tracked MCS but without an overlap. 
We suspect that this could be caused by the temporal 
mismatch between the two data sets as mentioned ear-
lier and should be treated as a HIT instead. As a result, 
by including the NEXRAD MCS masks from 1 hour 
before to 1 hour after the coincident hour, overlaps are 
found for those GPM detections (11 cases). 

The final result indicates that 115 of 158 DWC 
objects and 158 of 230 WCC objects can be verified 
as MCSs when compared to the NEXRAD data set, 
leaving 115 cases as FAR. In summary, 70 % of DWC 
and WCC systems classified by the GPM are MCSs 
identified in the NEXRAD data set. Notably, most of 
the GPM-detected MCS snapshots are during the gen-
esis (41 %) and mature (32 %) stages of the tracked 

MCSs. There are only approximately 21 % in the 
dissipation stage and 6 % in the initiation stage. These 
results are consistent with the finding of Feng et al. 
(2019) that warm season MCS convective features 
during the upscale growth stage are the largest and 
deepest. These convective features are most likely to 
meet the GPM DWC or WCC criteria.

After revisiting the 115 cases in the FAR category 
by examining the NEXRAD images before and after 
the GPM detection, 19 % of them lasted more than 6 
hours but their major axis length of precipitation area 
could not exceed 100 km to satisfy the MCS criteria 
defined by FLEXTRKR. The rest of 81 % cases dissi-
pate too soon and thus fail to satisfy the MCS duration 
requirement of 6 hours. These false alarms reveal 
the intrinsic limitation of the criteria used to identify 
MCSs by tracking NEXRAD echoes, and the fact that 
the conditions used to define the GPM echo-object 
categories are arbitrary. 

Because the majority of false alarms result from the 
insufficient duration, a question arises as to whether 
the HIT rate (defined as HITs/(HITs + FARs)) could be  
increased by lowering the MCS duration threshold. 
Some previous studies defined MCSs in this region 
using shorter duration of 4 hours (e.g., Geerts 1998; 
Haberlie and Ashley 2019). To examine the impact of 
MCS duration criterion on our results, we performed 
a sensitivity test by reducing the MCS duration 
threshold from 6 hours to 4 hours in FLEXTRKR, and 
the total number of MCSs tracked by NEXRAD in 
the three warm seasons increased from 740 to 1,193. 
However, only 12 GPM FAR cases were changed to 
the HIT category. Upon close examination of the FAR 

Fig. 3.  (a) The Deep Wide Convection (DWC) object defined by GPM on June 9, 2014 at 04:26:46 UTC and (b) the 
coincident NEXRAD observed MCS tracked by FLEXTRKR at 04:00 UTC, as well as (c) the intersection of GPM 
overpass time (dash-line) with respect to the evolution of the MCS precipitation area during its entire life cycle 
identified by the NEXRAD.
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cases, we found several reasons that explain this result. 
First, 90 % of the additional 453 NEXRAD-tracked  
MCS cases occurred outside the GPM overpasses; 
thus, they had no impact on the GPM statistics. 
Second, for those short-lived false alarms detected by 
the GPM, lifespans are commonly less than 3 hours; 
thus, they fail to meet even the shortened MCS dura-
tion criterion. Lastly, short duration and insufficient 
coverage are not exclusive, i.e., many GPM-detected 
objects that do not last longer than 6 hours also do 
not satisfy the size criteria. In this case, it is difficult 
to differentiate the actual causes of false alarms. The 
fact that changing the MCS duration threshold has a 
limited impact on GPM’s MCS statistics may further 
confirm the correspondence between the majority of 
GPM-detected DWCs/WCCs and the largest, deepest 
MCSs, as the latter require a longer period of time 
to form. However, there remain exceptions of short-
lived DWCs or WCCs, which raise the necessity of 
the temporal dimension. A more extreme sensitivity 
test of a 2 hours’ duration threshold was performed; 
then, the number of systems tracked by the NEXRAD 
increased to 1,671, and 49 false alarms change to the 
category of HIT, making the HIT rate 83 %. However, 
this comparison may not be meaningful because the 2 
hours’ duration is too short for MCS definition, which 
makes almost no difference to the direct radar echo 
comparison between the two platforms. Based on 
these tests, we conclude that 70 % accuracy reached in 
our first comparison remains a good overall estimate 
of the capability to determine MCS existence from the 
GPM radar data. 

By using the original MCS tracking data set as a 
reference, Fig. 4 and Table 1 present the GPM’s detec-
tion skills in each month, where the numbers of HIT, 
FAR; the numbers of NEXRAD-tracked MCSs; their 
averaged precipitation area coverage and duration are 
compared. The number of NEXRAD-tracked MCSs 
demonstrates a strong seasonality, which increases 
from April to June and then diminishes toward early 

fall. This variation follows the seasonal change in 
baroclinic instability over the CONUS. During spring, 
large-scale forcing brought by the mid-latitude trough 
frequently occurs, providing a favorable environment 
for organized convection (Maddox et al 1979; Peters 
and Schumacher 2014). In April, MCSs produced 
under strong baroclinic forcing typically feature a 
broad stratiform rain region, which results in the 
largest precipitation area, but the number is relatively 
low compared to that in the midsummer, when the 
CONUS has the weakest baroclinic instability and 
minimal frontal forcing. However, due to the favor-
able thermodynamic conditions and possible influence 
from sub-synoptic disturbances, local convection 
can nevertheless frequently grow upscale into MCSs 
(Wang et al. 2011; Song et al. 2019; Feng et al. 2019). 
The combination of spring-like baroclinic waves and 

Fig. 4.  Monthly total number of MCSs HIT (GPM 
detection validated by NEXRAD, red bars) and 
false alarm (FAR, not identified as MCS by 
NEXRAD, blue bars), overlaid by the monthly 
total number of MCSs detection by NEXRAD 
(black line) and their average precipitation area 
coverage (green line).

Table 1.  The statistics of GPM’s MCS detection skill in each month.

GPM HIT 
(#)

GPM FAR 
(#) GPM HIT Rate GPM False 

Negative Rate
NEXRAD MCS 

(#)

Average MCS 
Coverage 

(km2)

Average MCS 
Duration 

(hour)
April
May
June
July
August
September

43
47
58
61
37
27

  8
  9
26
23
31
18

84 %
84 %
69 %
73 %
54 %
60 %

16 %
16 %
31 %
27 %
46 %
40 %

104
140
160
137
122
  77

20,374
13,742
11,961
10,683
10,885
10,141

21.5
20.8
20.4
20.9
20.6
19.8
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a continuously warming surface possibly favors the 
peak number of MCSs in late spring and early summer 
(i.e., June), but the MCS precipitation areas are gen-
erally smaller than those in spring. Although fall has 
similar large-scale environments as those in spring, 
MCSs are less frequent, and no increase in average 
coverage is found. One possible explanation is the 
seasonality in surface temperature gradient, which is 
weaker in fall than in spring, possibly causing weaker 
baroclinic waves (Feng et al. 2019). The average MCS 
duration was also calculated for each month, and no 
seasonal variation was found. 

From the perspective of MCS detection by the 
GPM, several factors contribute to a higher HIT rate: 
more frequent MCS occurrence, larger precipitation 
area and longer duration (i.e., the propagating nature 
results in a larger area covered by MCSs). The trend 
of monthly HIT is consistent with the variation of 
the MCS numbers, indicating that the probability of 
GPM-detected MCSs increases with more frequent 
MCS occurrence. Spring corresponds to the lowest 
false negative rate (defined as FARs/(HITs + FARs)), 
which is consistent with the larger MCS coverage fa-
vored by the synoptic forcing. Thus, higher accuracy 
in GPM’s MCS detection can be expected relative to 
the rest of the months. By contrast, for the August–
September period, as the result of poleward expansion 
of the subtropical ridge (Wang et al. 2019), the 
baroclinic environment for supporting large MCSs no 
longer exists, resulting in a higher false negative rate. 

3.3  Global MCS distributions
After establishing the GPM’s MCS detection capa-

bility of approximately 70 % by validating against the 
NEXRAD-tracked MCS database over CONUS in the 
previous section, we can apply the DWC and WCC 
criteria to the GPM data globally to examine the prob-
ably global distribution of MCSs. Because ground-
based radar networks such as NEXRAD do not exist 
over most of Earth, GPM is the best available resource 
for determining the global pattern of MCS occurrence. 
Figure 5 illustrates the geographical distribution of 
the MCS occurrence frequency determined from 
GPM during the boreal summer in June–August (JJA, 
Fig. 5a) and during winter in December–February 
(DJF, Fig. 5b) over the 5-year period (2014 – 2018) 
with available GPM observations. The frequency is 
computed as the number of pixels identified as either 
DWC or WCC divided by the total number of pixels 
sampled by the GPM Ku-band radar within a 0.25° 
× 0.25° gridbox. It is evident that the occurrence 
of MCSs is more concentrated over land, which is 

consistent with previous studies indicating that con-
vection over vast oceans is generally less intense than 
over land (e.g., Futyan and Del Genio 2007; Houze 
et al. 2015). A comparison between Figs. 5a and 5b 
indicates that MCSs occur more frequently during 
the boreal summer than during winter for both hemi-
spheres. In North America, during summer, MCSs are 
densely distributed over the Great Plains (GP), where 
they are fed by warm moist air transported from the 
Gulf of Mexico by the climatological low-level jet on 
the lee side of the Rocky Mountains. In both summer 
and winter, MCSs frequently occur offshore of the 
east coast of North America. These MCSs tend to 
result from the initiation of gravity waves on the lee 
side of the Appalachian Mountains (Keighton et al. 
2007; Letkewicz and Parker 2010). In winter, MCSs 
are absent over the GP but occur over the southeast 
and the offshore of the east coast of the United States; 
this is consistent with NEXRAD-based MCS frequen-
cies reported by Feng et al. (2019).

Over the landmass of tropical South America and 
central equatorial Africa, large clusters of MCSs occur 
during JJA, but the hot zones of MCSs shift southward 
to the subtropics and mid-latitudes in DJF; this is con-
sistent with previous studies (e.g., Romatschke and 
Houze 2010; Rasmussen and Houze 2011; Rasmussen 
et al. 2014). The high-frequency MCS areas are 
displaced from the areas with the most regional 
rainfall (Houze 2015). Over Asia, three hot zones are 
identified in JJA, namely the Indian monsoon region; 
the east Asian monsoon region; and the maritime con-
tinent consisting Indonesia, Malaysia, and Northern 
Australia (Ramage 1968). The former two regions 
are strongly influenced by the summer monsoon flow, 
hence the MCSs peak in JJA but diminish in DJF. 
By contrast, the maritime continent MCS occurrence 
is dominated by diurnal forcing associated with the 
islands and peninsulas of the region, and in DJF, the 
diurnal convection is enhanced by surges of the boreal 
winter monsoon (Johnson and Houze 1987) and mod-
ulated by passages of the Madden–Julian Oscillation 
(Madden and Julian 1971, 1972, 1994). 

Note that all of the above MCS analyses are based 
on the strong thresholds applied to GPM detection 
as described in Section 2.1. A sensitivity test using 
moderate thresholds was performed with the corre-
sponding global MCS distributions illustrated in Fig. 6. 
As revealed by Houze et al. (2015), strong thresholds 
better represent the behavior of convection over land, 
whereas the weak oceanic convective features can be 
exhibited more easily using the moderate thresholds. 
By comparing Fig. 6 with Fig. 5, the locations of 
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high MCS occurrence are seen to be well maintained, 
but the frequency is greatly increased, potentially 
including many non-MCS objects. The DWC and 
WCC objects detected using moderate thresholds 
are also compared to the FLEXTRKR data set over 
the CONUS. Although the number of GPM-detected 
DWC and WCC objects increases from 388 to 620, 
the MCS HIT rate drops to 49 %. 

The global MCS distribution illustrated in Fig. 5 
extends the MCS detection to higher latitudes (beyond 
35°S – 35°N, covered by TRMM), where a notable 
MCS occurrence frequency is found above 60°N in 
Siberia, Northern Europe, and Canada. For the high- 
latitude events, Houze et al. (2019) further found that 
these high-latitude MCSs occur where global warming 
has been most intense.

4.  Conclusions and discussions

In this study, the spaceborne GPM Ku-band radar 
data sets are quantitatively compared to the ground-
based NEXRAD radar data sets during a 3-year period  
(2014 – 2016) over the CONUS. Based on the mor-
phology of GPM-detected radar echoes, two types 
of GPM-detected extreme convective echo objects, 
DWC and WCC, are compared with an MCS database 
constructed using feature tracking on synthesized geo-
stationary satellite and NEXRAD radar observations. 
The major findings of this study are summarized as 
follows.

(1) The GPM radar captures consistent 3D distri-
bution of radar reflectivity with NEXRAD across a 
wide range of precipitating cloud systems, including 

Fig. 5.  Geographical distribution of the probability of MCS occurrence frequency detected by GPM during the 
months of (a) JJA and (b) DJF. The gray shaded areas inside the continental regions represent the 700 m elevation. 
The probability is on a scale of 0 % to 100 % and is computed as the number of pixels identified as either DWC or 
WCC divided by the total number of GPM overpasses within a 0.25° × 0.25° gridbox.
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seasonal variations from spring to fall, when the GPM 
radar and NEXRAD data are interpolated to the same 
grid and appropriately smoothed. The comparison 
demonstrates that the two independent radar systems 
observe the 3D radar reflectivity fields in a consistent 
manner. 

(2) The GPM-classified DWC and WCC objects are 
compared to the NEXRAD-tracked MCS database. 
More than 70 % of these GPM-defined extreme con-
vective echo objects are collocated with tracked MCSs 
in the NEXRAD data set, indicating that the GPM- 
detected DWC and WCC objects are highly correlated 
with MCSs. The GPM’s capability in MCS detection 
demonstrates strong seasonality and a better perfor-
mance is found in spring and summer than that in fall. 
This seasonal variation follows the change of large-
scale environments that alter MCS characteristics. The 
majority of GPM-detected objects not corresponding 
to NEXRAD-tracked MCSs have lifespans shorter 

than 6 hours. These false alarms highlight the un-
avoidable uncertainty associated with the arbitrariness 
of criteria used to identify MCSs in the two data sets. 

(3) After validating the GPM’s performance in 
MCS detection over the CONUS, the DWC and WCC  
classification algorithm is applied to global GPM 
observations to obtain a global view of MCS distri-
bution. The well-known MCS hot zones, namely the 
US GP and the offshore of the east coast in North 
America, subtropical South America, central equatori-
al Africa, monsoon regions in Asia, and the maritime 
continent, are further confirmed in this study. More-
over, MCSs in high-latitude regions (above 60°N in 
Siberia, Northern Europe, and Canada) are revealed, 
and the relative numbers of MCSs over different parts 
of Earth are now quantitatively measured. 

Fig. 6.  Similar to Fig. 5 but using the moderate criteria.
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