ATM S 591: Predictability and Data Assimilation

Winter Quarter 2009.

Instructor: Greg Hakim

syllabus  |  resources  | lecture log  |

Winter Quarter 2009.

Instructor: Greg Hakim

Class meets: MW 10:30-11:50. ATG 610.

Recommended Texts:
Wunsch, C. "Discrete Inverse and State Estimation Problems" (2006)
Kalnay, E. "Atmospheric Modeling, Data Assimilation and Predictability" (2003)
Daley, R. "Atmospheric Data Analysis" (1993)

Prerequisites: interest in geophysical modeling; basic linear algebra.

Grading: class project.

Course description

Syllabus:

  • Overview and background review.
    • Least squares; adjoints; Lagrange multipliers.
    • Conditional probability; Bayesian methods.
    • Information theory.
  • Highlights from dynamical systems theory.
    • flow stability and error growth.
    • Lyapunov exponents and vectors.
    • finite-time stability.
  • Deterministic and probabilistic forecasting.
    • Liouville & Fokker-Planck equations.
    • Monte Carlo approaches.
    • ensembles.
    • information metrics.
  • State estimation
    • Bayesian estimation.
    • Linear dynamics & Gaussian statistics: Kalman filtering.
    • Variational approaches: 3DVAR and 4DVAR.
    • Monte Carlo ensemble filters.
    • Square-root ensemble filters.
    • Kalman smoothers.
  • Sensitivity analysis
    • Adjoint and ensemble methods.
    • Targeting and control.
    • Network design.
  • Model error
    • Parameter estimation.