Nutrient Cycle Phytoplankton produce energy for life from photosynthesis, which
means they intake carbon dioxide and produce oxygen. They live in the upper
ocean where they can absorbe light. They are colorful and actually alter
the color of the ocean. They thrive where the ocean is nutrient rich. Deep
water is relatively nutrient rich because phytoplankton deplete nutrients
near the surface, and phytoplankton fall to the ocean depth when they die.
On their path to the ocean floor they deposit nutrients in the water below
the surface. Phytoplankton are food for fish and serve as a marker for upwelling.
Check out the Seawifs Figure 5-13 in your text or here.
The ocean color is shown measured from satellite, but the color is enhanced
a great deal to exagerate the detail. Lighter colors (like orange and yellow)
are high in phytoplankton, indicating upwelling from coastal upwelling and
mixing. The term mixing refers to upward and downward motions that occur
intermittently in space and time in a region when the density profile is
favorable for vertical motions (i.e., nearly unstable). Mixing in the high
latitudes causes these regions to be nutrient (and hence phytoplankton) rich. Isotopes and Carbon-14 and ocean age at depth Isotopes are defined in Chapter 5. I described how
they are used to infer information about climate. For example, water isotopes
evaporate at different rates depending on the temperature of the liquid layer.
The underlying reason is that heavier water isotopes require more energy.
Condensation also occurs at different rates for different water isotopes.
Consequently the ratio of isotopes in ice and snow tell us the temperature
history of their lifetime since evaporation.
Photosynthesis is another example of a process that depends on isotopes: Isotopes of carbon dioxide are consumed at different rates depending on a number of things like plant type, temperature, etc. Live biota acquire carbon-14 from breathing in carbon dioxide. Once they die, the source of carbon-14 is gone, and the supply of carbon-14 slowly decays because carbon-14 is radioactive. It has a halflife of 5730 years, so it is useful for looking at century and milennial timescales. Carbon-14 that is dissolved in the water is used as a marker for the time since ocean water has been near the ocean surface. This is also called the "age" of the water. Carbon-14 is acquired at the ocean surface from contact with the atmosphere. The carbon-14 is then carried with the ocean water, but it is decaying all the time, albeit slowly. Consequently the concentration of carbon-14 gives an indication of how long it has been since the water has been at the surface. See Figure 5-11 in the text or here. El Nino
The atmospheric circulation in the tropical Pacific gives rise to a pressure gradient from east to west that is known as the Southern Oscillation. The term ENSO is a combination of El Nino + Southern Oscillation. The Southern Oscillation is defined as the pressure in the west minus the pressure in the east, so it is more negative than usual during El Nino conditions. Usually El Nino is measured in terms of the sea surface temperature of the eastern Pacific, so it is more positive than usual during an El Nino. Thus the two best known measure of ENSO have opposite signs during a big El Nino (or La Nina, roughly the opposite of El Nino). Data are taken in a giant array of buoys in the tropical Pacific that is one of the crowning achievements of climate research. These data provide enough information to allow a great deal of research about current conditions, in part to make forecasts of the future. Presently the sea surface temperature in the eastern Pacific is a little higher than normal - a 0.5 on one El Nino scale, where 1.0 is a pretty decent event. Forecasts indicate we might get up to 0.7 in the next couple of months. |
|||
| Back to Schedule Contact the instructor at: atms211@atmos.washington.edu Last Updated: 10/22/2004 |